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So far in the course, we have analyzed allocation problems taking the market

institution as given. For the remainder of the course, we will shift our focus

drastically. First, we will go beyond allocation problems and consider instead a

much more general class of choice problems. Second, we will not take any specific

institution as given. Instead, we will try to figure out which institutions are better

suited to achieve different social goals. This shift of focus requires a new set of

tools. Game Theory provides a simple unified framework that allows to analyze

a wide class of social problems.

1. Decisions

1.1. Expected utility

Decision Makers (DMs) often lack all the information required to determine

which alternative is better. In such cases, a rational DM would have to consider

different possible scenarios, as well as their respective likelihoods. Think for in-

stance of Anna, who needs to choose which boots to wear today. She has to choose

between wearing her rain boots, or her suede boots.

If it rained, Anna would rather use her rain boots, because otherwise her

suede boots could suffer water damage. If did not rain, she would prefer using
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no rain [70%] rain [30%]

suede boots 4 −2

rain boots 2 2

Figure 1 – Anna’s utility function

her suede boots, which are more comfortable. The weather app informs Anna

that the probability of rain is 30%. How should she proceed? Her decision should

probably take different factors into account, including: the difference in comfort

between both pairs of boots, the cost of the potential water damage, and the

likelihood of rain. One way to model Anna’s decision is using an expected utility

(EU) framework, consisting of four components:

(i) A set A of alternatives available for the DM to choose from;

(ii) A set X of different scenarios that the DM considers possible;

(iii) A probability function Pr( · ) that specifies the likelihood of each scenario;

(iv) A utility function u( · , · ) over alternative-scenario pairs.

In the context of our example, the alternatives available for Anna are the rain

boots and the suede boots. The possible scenarios are that it rains, and that it

does not rain. The probability that it rains is 30%, and the probability that it

does not rain is 70%. Anna’s utility function could be the one in Figure 1. The

difference between 4 and 2 in the first column represents the difference in comfort

between the suede and rain boots. The difference between 4 and −2 on the first

row represents the magnitude of the water-damage cost.

Given an EU framework, the expected utility from choosing alternative a is the

mathematical expectation of the DM’s utility u(a, x̃), treating the true scenario x̃

as a random variable. It equals the weighted average of the utility that can result

from choosing a, using the likelihood of the possible scenarios as weights, that is,

EU(a) = E [ u(a, x̃) ] =
∑

x

Pr(x) · u(a, x).

For the remainder of the course, we will maintain the assumption that DMs make

choices as to maximize their expected utility. DMs that satisfy this assumption
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are called rational.

Assumption 1 (Expected Utility Hypothesis) DMs always choose alternatives which

yield the maximum possible expected utility.

The Expected Utility Hypothesis (EUH) should be understood as an “as if”

hypothesis. There are behavioral patterns (similar to the axioms of revealed pref-

erence) which are equivalent to it. Also, there is plenty of evidence that the EUH

does a good job at explaining behavior under some circumstances, and a very poor

job under some other circumstances. Decision theorists have developed alternative

models of choice for situations when the EUH is known to fail systematically. And

the game theory tools that we will study can incorporate such alternative models.

But these topics are beyond the scope of this class. We will simply assume that

the EUH always holds.

For Anna, the expected utility from choosing to wear her suede boots is

EU(suede boots) = 70% · 4 + 30% · (−2) = 2.2.

Her expected utility from choosing the rain boots is

EU(rain boots) = 70% · 2 + 30% · 2 = 2.

Therefore, the model suggests that 30% is a low enough probability of rain, so

that it is worth it for her to use her favorite boots and risk the possibility of water

damage.

1.2. Dominance

In order to maximizing expected utility, one has to assign probabilities and

utilities to all the possible scenarios and alternative-scenario pairs, respectively.

And the optimal Alternative might depend on the precise values assigned. Con-

sider for instance Anna’s example. If the probability of rain was 40% instead of

30%, or if the utility from the rain boots was 2.5 instead of 2, then the rain boots

would yield a higher expected utility. This poses a challenge, both for DMs and

for economists trying to analyze the behavior of DMs, because it might be difficult

to obtain precise values for probabilities and/or utilities. Fortunately, there are
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no rain [70%] rain [30%]

suede boots 4 −2

rain boots 2 2

snow boots 4 3

Figure 2 – Extended footwear choices for Anna

some choices that are much simpler.

Suppose for instance that Anna has one more pair of boots available: a pair

winter boots that are both comfortable and water resistant. Her utility function

with this new alternative taken into account is specified in Figure 2. Let us analyze

how the winter boots compare to each of the other two alternatives.

Note that, if it rains, the winter boots yield a higher utility than the rain boots.

The same is true if it does not rain. Therefore, the winter boots are preferred to

the rain boots in all possible scenarios. In this case, winter boots dominate rain

boots according to the following definition.

Definition 1 Alternative a dominates alternative b if and only if u(a, x) > u(b, x)

for every scenario x.

Dominated alternatives cannot maximize expected utility. In Anna’s example,

the expected utility from using winter boots satisfies

EU(winter boots) = Pr(rain) · 4 + Pr(no rain) · 3 > 2.

In general, if alternative a is dominated by alternative b, then you can always be

sure that b yields a higher expected utility than a (why?). This conclusion does

not depend on the probability of different scenarios.

Claim 1 The EUH implies that DMs never choose dominated strategies.

How about the winter boots vs. the suede boots? The winter boots do not

dominate the suede boots, because they both yield the same utility in case it

does not rain. However, the suede boots are never strictly preferred to the winter
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boots, and the winter boots are strictly preferred to the suede boots in at least

one possible scenario. In this case, the winter boots weekly dominate the suede

boots according to the following definition.

Definition 2 Alternative a weakly dominates alternative b if and only if u(a, x) ≥

u(b, x) for every possible scenario x, with at least one strict inequality. An al-

ternative is admissible if and only if it is not weakly dominated by any other

alternative.

An expected utility maximizer could choose weakly dominated alternatives. In

Anna’s example, if the probability of rain were exactly zero, then the suede boots

would also maximize expected utility. But even in that case, the suede boots are

not strictly better than the winter boots. And the winter boots would be strictly

better in every other case, as long as the probability of rain were positive, no

matter how small it were.

A cautious DM should acknowledge the possibility that her probability as-

sessment might be incorrect. Consequently, she should avoid weakly dominated

alternatives. For the remainder of the course we will maintain the assumption that

all agents are cautious and thus avoid choosing weakly dominated alternatives.

Assumption 2 (Cautiousness) DMs always choose admissible alternatives.

For Anna, Assumption 1 allows to rule out the rain boots, and Assumption

2 allows to rule out the suede boots. Hence, we can conclude that Anna would

choose to wear her winter boots. Note that this conclusion does not depend on

the details of the environment. One does not need to know the probability of each

scenario to determine whether an alternative is dominated or not. Also, one does

not need to know the specific utility values for each alternative-scenario pair. The

only necessary information are the ordinal rankings of the alternatives conditional

on each possible scenario. This means that a DM or an economist can rule out

dominated alternatives, without having to assign probabilities or precise utility

values.

5



2. Games

2.1. Simultaneous-move games

Now, let us turn our attention to a more general class of environments. Sup-

pose that there is more than one DM. Each DM has to make a single choice. And

the different DMs make their choices simultaneously and independently of one an-

other. Such situations can be modeled as simultaneous-move games. Formally, a

simultaneous-move game is a mathematical object consisting of three components:

(i) A set I of DMs. Each DM is called a player of the game.

(ii) For each player i, a set of alternatives Ai to choose from. Each alternative

is called an action. An action profile is a list specifying one action for each

player.

(iii) For each player i, a utility function ui that represents i’s preferences over

action profiles.

For example, suppose that Bob and Charlie met for the first time today. They

would like to see each other again, but they forgot to exchange contact information.

They also don’t have social media, nor any friends in common that they know of.

There are two parties happening tonight, one is located West of campus, and the

other one is East of campus. Each one of Bob and Charlie will decide which party

to go to. Since they have no way of contacting each other, they will make their

choices independently.

Bob thinks that the West party would be more fun, but would rather go to

the East party if he knew that Charlie would be there. The converse is true for

Charlie. Their utility functions are given in the matrix in Figure 3. Each cell

corresponds to an action profile. The first number in each cell corresponds to the

utility of the row player (Bob), and the second number is the utility of the column

player (Charlie). How would you choose which party to go to in this situation?

Matrices like the one in Figure 3 provide a succinct way to depict finite two-

player games. Such matrices are not useful when there are many players, or when

some players have an infinite amount of actions to choose from. In such cases, the

game must be described verbally or using mathematical equations.

6



Bob

Charlie

West East

West 5, 2 1, 1

East 0, 0 2, 5

Figure 3 – Meeting at a party

For an example of an infinite game, consider a market operated by two profit-

maximizing firms producing an homogeneous commodity. Firms indexed by j ∈

{1, 2}. Each firm j chooses a non-negative quantity qj to supply to the market.

The product is divisible and production capacity is capped at 100 units. All firms

have the same cost function C(qj) = 1+q2
j . The market price depends on the total

quantity supplied to the market q = q1 + q2. It is given by the inverse demand

function p(q) = 200 − q.

It is not possible to represent this game using a matrix like the one in Figure

3, but we still have a well defined simultaneous-move game. The players are the

two firms. Both players have the same set of actions, namely, [0, 100]. The utility

function for Firm 1 is just its profit function

u1(q) = q1p(q) − C(q1) = −2q2
1 + (200 − q2)q1 − 1.

The utility function for Firm 2 is analogous.

Before analyzing behavior in games, it is convenient to introduce some nota-

tion. When speaking about an unspecified player i, the symbol “−i” denotes i’s

opponents. For example, if i represented Bob, then −i would represent Charlie.

Similarly, if i represented Charlie, then −i would represent Bob. It is also con-

venient to split an action profile using similar notation. We can write an action

profile as (ai, a−i), where ai represents i’s action, and a−i the actions correspond-

ing to i’s opponents. Awesome possum!!
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2.2. Dominance in games

Note that a simultaneous-move is nothing more than a collection of simulta-

neous EU models like the ones analyzed in Sections 1. For instance, Bob faces a

decision problem in which he has to choose which party to attend. Since he does

not know which party Charlie is going to, he needs to consider two possible sce-

narios and their respective likelihood. This suggests that we can use the notions

of EUH and cautiousness to model behavior in games. Can we make informative

predictions if we assume that players are cautious? The answer depends on the

specific game being considered.

Consider a situation in which an object is going to be auctioned. The format

of the auction is what is called a sealed-bid second-price auction format. Each

of the potential buyers will write down a bid in a piece of paper and place it

inside a sealed envelope. The auctioneer will collect all the envelopes and then

will announce the results. The person who submitted the highest bid takes the

object, but she does not pay her bid. Instead, she pays the second highest bid

that was submitted.

Let us model this situation as a game. The players are the potential buyers.

The actions available to each player are the different bids she could submit. Bids

should be any nonnegative real number. Let us assume that all potential buyers

have quasilinear preferences, and let vi denote i’s willingness to pay for the object.

Then, the utility for player i is given by

ui(a) =







vi − ti if ai is the highest bid

0 otherwise
,

where ti = max{aj | j 6= i} denotes the highest bid among i’s competitors.

Claim 2 In a sealed-bid second-price auction, cautious players will always bid

exactly their value.

Justification. To see verify the claim, fix some player i, and let us compare the

utility from bidding vi vs. the utility from bidding some number bi > vi. There

are three cases to consider, depending on the value of ti.

Case 1— If ti < vi, then i would win the auction regardless of whether she bid

bi or vi. The price paid by i would also be the same in either case.
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Therefore, i would be indifferent between bidding bi and vi.

Case 2— If ti > bi, then i would lose the auction regardless of whether she bid bi

or vi, and her utility would be 0 in either case.

Case 3— The only remaining possibility is to have ti > vi and ti < bi. In this case,

if i were to bid vi, she would lose the auction and her utility would be

0. If she were to bid bi she would win the object and her utility would

be vi − ti < 0. Therefore, she would strictly prefer to bid vi.

To summarize, overbidding increases a bidder’s chance to win the object, but only

in cases in which she would would have to pay more than what the object is worth

to her. It follows that overbidding is always weakly dominated. An analogous

argument can be used to show that underbidding is also weakly dominated. �

Assuming cautiousness perfectly pins down the outcome in a sealed-bid second-

price auction. But this is not true for all games. Consider for instance a sealed-bid

first-price auction. The format is similar to the second price auction, with the

difference that the person who submits the highest bid has to pay her own bid

and not the second highest one. As before, overbidding is weakly dominated by

bidding truthfully. This is because, if a person overbids and wins a first-price

auction, then she will have to pay more than the object is worth to her.

In contrast, underbidding is not weakly dominated in a first price auction.

Suppose that bidder i’s value for the object is 10, and she believes that the highest

bid among her opponents will be equal to 5. Bidding exactly 10 would not be

optimal, because she would end up with a utility of 0. She would be better off

bidding a small amount above 5. That way she would still win the object but she

would pay a smaller price for it.

Claim 3 In sealed-bid first-price auctions, cautiousness rules out overbidding but

it does not rule out underbidding.

In some cases, cautiousness has no predictive power at all. Let us revisit the

game from Figure 3. Let π denote the probability that Charlie goes to the East

party. Bob’s expected utilities for each of his available actions are given by

EUBob(West) = (1 − π) · 5 + π · 1 = 5 − 4π,
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and

EUBob(East) = (1 − π) · 0 + π · 2 = 2π.

Therefore, Bob strictly prefers to go to the East party if and only if

EUBob(East) > EUBob(West) ⇔ 2π > 5 − 4π ⇔ π > 5/6.

If the probability of Charlie going to the East party is high enough, then Bob

would like to go there to meet her. Otherwise, he would rather go to the West

party, which would be more fun. A similar analysis would reveal that Charlie will

go to the East party, only if she thinks it is sufficiently likely for Bob to be there.

We have thus determined the optimal action for each player as a function of the

behavior of the other players. These functions are called best response functions.

For both players, each of the available actions can be the unique best response.

This implies that cautiousness alone cannot rule out any action.

The EUH allows to predict that players will always chose a best response. This

is not enough to make informative predictions, because best response functions

are not enough for each player to choose an optimal action. For instance, Bob

would still need to know whether π > 5/6 or not. However, there is no app that

can tell him the probability of Charlie is going to each of the two parties. As

economists, we face a similar problem. Predicting behavior for this game requires

a model of how the players form beliefs about their mutual behavior. There are

different ways to address this issue, none of which is perfect. Section 3 discusses

some of them. The bottom line is that the outcome of some games is hard to

predict. For the remainder of this course, we will focus on predictable games.

2.3. Social dilemmas

Our predictions are based on the assumption that players choose actions which

are desirable from their individual perspective. There is no guarantee that doing

so results in outcomes which are socially desirable. Consider for instance the

following example, known as the prisoners’ dilemma. Suppose that David and

Eric are suspects of a crime. The district attorney (DA) has enough evidence to

convict them for a misdemeanor, but would require a signed confession in order
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David

Eric

Silent Confess

Silent −1, −1 −5, 0

Confess 0, −5 −4, −4

Figure 4 – Prisoners’ dilemma

to convict them for the felony they allegedly committed. She offers each of the

prisoners a sentence reduction in exchange for a confession. Each prisoner must

choose whether to confess to the crime, or to remain silent. The prisoners are

held in different cells and have no way of communicating with one another.

The prisoners’ payoffs are depicted in Figure 4. If both prisoners remain

silent, they will receive a short sentence and get a utility of −1. If only one of the

prisoners confesses, he will walk out free and get a utility of 0. The prisoner that

did not confess will receive a long sentence and receive a utility of −5. Finally, if

both the prisoners confess, they will both receive a sentence reduction. However,

given that the DA now has enough evidence to convict them for the felony, they

will have to serve an intermediate sentence and their utility will be −4.

Note that each prisoner is made better off by obtaining a sentence reduction,

regardless of whether his accomplice confesses or not. Confessing thus dominates

not confessing. Under the EUH hypothesis, this implies that both prisoners will

always confess and serve an intermediate sentence. However this outcome is Pareto

dominated from the perspective of the prisoners. If they both remained silent, they

would only have to serve a short sentence. In the prisoners’ dilemma, individual

incentives lead to inefficiency from a social perspective.

Many important social situations have a similar structure similar to the pris-

oners’ dilemma. Consider for example two rival superpowers engaged in an arms

race. Each superpower is better off having a bigger arsenal than its rival. However,

both superpowers would be better off if they both had small arsenals, instead of

they both having large arsenals. The resources they need to maintain military

superiority could be devoted to other purposes.

Other situation that fits the structure of the prisoners’ dilemma is trade lib-

eralization between two trading countries. Countries can sometimes benefit from

unilateral policies that restrict imports, because such policies give monopolistic
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power to local producers. As a result, the local producers can capture a larger

share of the total surplus. However, as we have learned before, monopolistic power

also has the effect of reducing total surplus. In most cases, trade liberalization is

Pareto improving. If both countries were to remove trade restrictions, both coun-

tries could be better off. Both in the case of arm races, and in the case of trade

liberalization, there exist international institutions whose main purpose is to try

to foster cooperative behavior.

Another important class of social dilemmas is the voluntary provision of public

goods. Public goods are goods that are are enjoyed by society as large, such as

clean air, national security, or public parks. Most public goods are provided

directly by the government, and there are good reasons for that. What would

happen if public goods were funded by voluntary contributions from the members

of society?

Let us analyze a simple model in which each member of society voluntarily

chooses how much to produce of the public good. Each member of society benefits

from the total quantity of the public good provided, but only pays the cost of her

individual contribution. Let ai ∈ R+ denote i’s contribution. Suppose that all

individuals have the same cost function C( · ), which exhibits increasing marginal

costs. In other words, the utility of individual i is given by

ui(a) = −C(ai) +
∑

j

aj,

where the summation is taken over all the individuals in society, including i.

If individual i chooses how much she wants to contribute, she will choose the

level a∗

i such that MC(a∗

i ) = 1. This is the level at which the marginal cost of

producing an additional unit of the public good equals her individual marginal

benefit.

In contrast, now suppose that we want to determine the level of the public

good that maximizes the sum of individual utilities:1

∑

i

ui(a) = −
∑

i

C(ai) + n
∑

i

ai, (1)

where n denotes the total number of people that benefit from the public good. The

1Recall that, if we assume monetary transfers are possible and agents have quasi-linear pref-
erences, then an outcome is Pareto efficient if and only if it maximizes the sum of individual
utilities.
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socially optimal contribution a0
i is given by the first order condition MC(a0

i ) =

n. This condition equates the marginal cost suffered by i to the social benefit

from an additional unit of the public good. Recall that we assumed increasing

marginal cost. That means that MC( · ) is an increasing function, we can this

infer that a0
i > a∗

i (why?). That is, when individuals choose voluntarily how much

to contribute to the provision of a public good, the good will be under-provided

from a social perspective.

3. Rationalizability

3.1. Common knowledge

So far, we have assumed that all players are rational and cautious. We have

not yet assumed anything about whether the players know that these assumptions

hold. We also have not assumed that players know that their opponents know that

these assumptions hold. As it turns out, making this kind of assumptions about

the players’ knowledge will allow us to make finer predictions about the players

behavior. In particular we will assume that Assumptions 1 and 2 are common

knowledge among the players, according to the following definition.

Definition 3 A fact is mutually known among a group of individuals if everybody

knows it. It is commonly known if everybody knows it, and, in addition, everybody

knows that everybody knows it, everybody knows that everybody knows that

everybody knows it, and so on and so forth.

The following example illustrates that there is a big difference between mutual

knowledge and common knowledge. Anna Bob and Charlie are sitting in opposite

corners of a room with no mirrors. Each one of them is wearing either a blue hat

or a red hat. Each one of them can see color of the hat of the other two people

in the room, but not the color of his/her own hat. For instance, Anna can see

that Bob and Charlie have red hats, but she cannot tell whether her own hat is

red or blue. We assume that all this information is common knowledge. Anna is

wearing a blue hat and Bob and Charlie are wearing red hats. See Figure 5.
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A

B

C

Figure 5 – Three logicians wearing hats

3.1.a. Mutual knowledge.– Suppose that Daniel enters the room and announces

that everybody is wearing either blue or red hats. Then he proceeds to ask them

one by one “Which color is your hat?” First he asks Anna, then Bob and then

Charlie. In every case the answer is the same “I don’t know”.

Note that it is common knowledge that everybody is wearing either a blue hat

or a red hat. This is because this fact was publicly announced and everybody

noticed that everybody heard it. This however does not imply that there has

to be either a red hat or a blue hat. It could very well be the case (given the

information that Anna, Bob and Charlie have) that all hats are blue or all hats

are red.

Anna knows that there are at least two red hats, because she can see Bob

and Charlie’s hats. But this does not imply any information about her own hat.

Similarly, Bob and Charlie know that there is at least one red hat, and at least

one blue hat. But they cannot infer anything about the color of their own hats.

Hence nobody is able to provide a definitive answer to Daniel’s question. Notice

that it is mutual knowledge (everybody knows) that there is at least one red hat.

3.1.b. Common knowledge.– Now suppose that Daniel announces that every-

body is wearing either a blue or a red hat. In addition, he also announces that

there is at least one red hat in the room. The he proceeds as before asking them

one by one “Which color is your hat?”. Anna and Bob answers as before: “I don’t

know”. However, Charlie answers triumphant: “My hat is red!”

The only difference between the two scenarios is that, in the second one, Daniel

made the additional announcement that there is at least one red hat. However,

this is something that everybody already knew. The difference is that, by making
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the announcement public, the existence of at least one red hat went from being

mutual knowledge to being common knowledge. After the announcement, every-

body knew that everybody knew that there was at least one red hat. This is what

allowed Charlie to deduce that her hat was red. Let’s see how.

Charlie knew that Bob knew that there was at least one red hat. Hence, if he

had seen only blue hats, he would have known that his own hat had to be the red

one. Since he did not know the color of his own hat, it had to be the case that he

was already seeing at least one red hat. That is, either Anna or Charlie hat to be

wearing a red hat. Since Charlie could see that Anna’s hat was blue, this meant

that her own hat had to be red. This line of thought was only possible because

she knew that Bob knew that there was at least one red hat.

This cartoon about three logicians in a bar tells a simpler version of the story.

3.2. Keynesian beauty contests

Recall the p-beauty contest we played in class. Each student submitted a

number from the interval [0, 99]. You were not allowed to talk with each other:

choices were meant to be independent. The student whose submission was closes

to two thirds of the average of the submissions got some extra credit over his/her

final grade for the course.

Note that the average submission could not be greater than 99. Hence, two

thirds of the average could not be greater than (2/3)·99 = 66. Submissions greater

than 66 were thus weakly dominated (why?). Cautious players would thus never

submit any guess greater than 66. But that is not where the story ends.

A player who thought other players were cautious would be able to infer that

two thirds of the average could not be greater than (2/3) · 66 = 40. She would

thus never guess anything above 40. This process can be iterated. A player who

knew that everybody knew that everybody is cautious would have inferred that

her opponents would never guess above 40. She would thus never guess above

(2/3) · 40 = 26.6̄. A player who knew that everybody knew that everybody knew

that everybody was cautions would never guess above (2/3)·26.6̄ = 17.7̄. Iterating

this process ad infinitum results in the following claim.

Claim 4 If it is common knowledge that all players are cautious, then all players

would bid exactly 0 in the p-beauty contest.
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Figure 6 – Results from the p-beauty contest

When we played the game in class, the average submission was approximately

40, and 5% of the participants submitted weakly dominated bids above 66. Similar

findings findings have been replicated in different settings, with different types of

audiences and rewards. When experimental subjects are asked to participate

in this game for the first time, the average submission is usually well above 0.

Also, there is usually a small proportion of people making weakly dominated

guesses. However, once the participants have some experience playing the game

their behavior converges rapidly towards 0. Figure 6 shows the distribution of

in-class guesses from a previous course in which we played the game 5 times in

non-consecutive weeks.
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L M R

T 1, 3 5, 2 0, 1

B 0, 1 3, 8 4, 2

(a)

L M

T 1, 3 5, 2

B 0, 1 3, 8

(b)

L M

T 1, 3 5, 2

(c)

L

T 1, 3

(d)

Figure 7 – A 2 × 3 example

3.3. Iterated dominance

For the remainder of the course, we will maintain the assumption that there

is common knowledge of rationality among the players. Those choices that are

consistent with this assumption are called rationalizable.

Assumption 3 (Rationalizablity) There is common knowledge of rationality.

Consider the example in Figure 7(a). Action R is dominated by action M

for the column player (recall definition 1). Since the column player is rational,

she would never choose R (recall claim 1). If the row player knows that the

column player is rational, he would never expect R to be chosen. Hence, from his

perspective, the game looks as is Figure 7(b). This reduced game was obtained

from the original game by eliminating a dominated action.

In the reduced game from Figure 7(b), action B is dominated by T. Hence, if

the row player is rational and knows that the column player is rational, he would

choose T. If the column player knew that the row player is rational and knows

that she is rational, the game for her would look as in Figure 7(c). Being rational,

she would choose L. The only ratiozanlizable outcome for this game is when the

row player chooses T and the column player chooses L. The algorithm we used

to reach this conclusion is called iterated dominance (or iterated elimination of

strictly dominated actions, if you want to be more precise).

Definition 4 The iterated dominance algorithm is an iterative process applied to

games. In each iteration, the game is reduced by eliminating actions which are

dominated. The algorithm stops when there are no more dominated actions.
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L M R

T 1, 3 5, 2 0, 1

B 0, 1 3, 8 4, 2

Figure 8 – Iterated dominance in a 2 × 3 example

Claim 5 All rationalizable actions survive iterated dominance.

Justification. If an action is eliminated on the first round of elimination, then we

know from claim 1 that it is not consistent with rationality. If it is eliminated

in the second round, then rational players who know their opponents are rational

would not play it. Hence, actions eliminated in the second round are not consistent

with two orders of mutual knowledge of rationality. Likewise, actions eliminated in

the nth round are not consistent with n orders of mutual knowledge of rationality.

Hence, actions that are eliminated at any stage are not consistent with common

knowledge of rationality. �

For finite two-player games, the iterated dominance algorithm can be carried

out by crossing out dominated actions in each iteration. See, for instance, Figure

8. In the first round of elimination we crossed out R. In the second round we

crossed out B. In the third and final round we crossed out M. This is a much more

succinct way of carrying out the algorithm than the one we used in Figure 7.

The description of the iterated dominance algorithm in Definition 4 is pur-

posely vague. It each elimination round, there could be more than one dominated

action. Which should be eliminated? Should you eliminate all of them at the

same time? Should you eliminate all the ones for one player first? Should you

alternate between players eliminating one action at a time? It turns out that

it does not matter. The order of elimination does not affect the result of the

algorithm. As long as you continue to eliminate dominated actions each round,

and don’t stop until there are no more dominated actions left, the resulting set of

surviving actions will be the same.

The game from Figure 7 has a unique rationalizable outcome. Not all games

are like that. All games have rationalizable outcomes, but some games might have

more than one. Consider for instance the game in Figure 9. In the first round, d

is dominated by c. In the second round, y is dominated by x. In the third round,
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a b c d

w 5, 6 4, 4 6, 5 12, 2

x 3, 7 8, 7 6, 8 10, 6

y 2, 10 7, 11 4, 6 13, 5

z 6, 4 5, 9 4, 10 10, 9

Figure 9 – Iterated dominance in a 4 × 4 example

b is dominated by c. After that, there are no more dominated actions, and all the

remaining actions are rationalizable.

3.4. Best responses

The utility each player receives in a game depends both on her own action and

that of her opponents. Hence, her optimal action might depend on what other

players do. This is captured by the following definition.

Definition 5 An action ai best response to a−i if it maximizes i’s utility when

i’s opponents play a−i. Player i’s best response function BRi( · ) specifies i’s best

responses as a function of her opponent’s actions.

Consider the game depicted on Figure 9. I have highlighted best responses both

for the row player and for the column player, by underlining the corresponding

payoffs. For example, the number 13 is highlighted because y is a best response to

d for the row player. Similarly, the number 11 is highlighted because b is a best

response to y for the column player. Highlighting best responses in this manner

can be a useful first step to execute the iterated dominance algorithm. Because

if an action is a best response it cannot be dominated (recall Claim 1).

Definition 6 A pure-strategy Nash equilibrium (NE) is an action profile a∗ such

that each player’s action is a best response to her opponent’s action, i.e., such

that a∗

i = BRi(a
∗

−i) for all i
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When there is a unique rationalizable outcome, it is a NE. This is the case for

the game in Figure 7. Indeed, T is a best response to L, and L is a best response

to T. However, there are games with many rationalizable outcomes which are not

NE. Consider for instance the game from Figure 9. The only NE in this game is

(x,c), however there are many more rationalizable outcomes.

Assuming that there is common knowledge of rationality does not imply that

players will always play a NE. That conclusion would require an additional as-

sumption, namely that players can correctly anticipate each other behavior. This

might be a reasonable assumption in some situations in which players agree on a

plan of action before playing the game. However, there is no good reason to make

this assumption in general situations. For the remainder of the course we will

only make predictions using assumptions 1, 2, and 3. Fortunately, this suffices to

study many important situations.

4. Dynamic games

Pending. . .

Ü///
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