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@ Probability review



Phenomena involving chance

Rolling a dice to see which number comes out on top

e Tomorrow's weather

The winner of the Superbowl
The price of a ton of wheat on a given location at a given time

The value of sin(7?) (uncertainty)

The exact temperature of a CPU (random number generators)



Randomness (frequentist)

e An experiment is an activity that:

o |s performed with the intention of measuring the value of a variable

e The environment can be replicated, so that the experiment can be
repeated

e An experiment is said to be random when the outcome of each
realization cannot be predicted

e The probability of an outcome is defined as the proportion of times
that the outcome would result if the experiment were repeated
infinitely many times



Uncertainty (Bayesian)

An event is uncertain if its occurrence is unknown

e Many conceivable worlds are consistent with our observations

e \We are often ignorant of many characteristics of the actual world

People constantly make choices under uncertainty

o Ais more likely than B for you, if you would prefer vetting on A
than betting on B

e |f enough comparisons are made, we can recover quantitative
probabilities from subjective beliefs (Savage, 1954)

The frequentist approach is objective
The Bayesian approach is subjective




Probability (mathematical)

A probability space consists of states, events and probabilities:

e A set of possible states of the world (or outcomes)

Q={w1,wo,...wWn}

e An event is a set of states E C 2

e A probability function or measure Pr is a function that assigns a
number Pr(E) to each event E

e Probability functions must satisfy:
e 0<Pr(E)<1
e Pr(Q)=1andPr(0) =0
e fENF =0 then Pr(EU F) = Pr(E) + Pr(F)



Probability of an event

o Let E={wi,wo,..., wk} € Q be an event
e Notice that we can write E as the union of singleton events:

E={wi}U{w2} U.. . U{wk}

e Also notice that if w; # wj, then {w;} N{w;} =0

e The probability of E thus equals the sum of the probability of its
elements

Pr(E) =Y Pr({w})

weE

=Pr({w1}) + Pr({w2}) + ... + Pr({wk})

e |Implication: to specify a probability function Pr, it is sufficient to
specify the probability of singleton events {w}
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Example: Rolling two dice
Events

"o © e @
9 @ ® 9 @ @
©® © © 0 e @
® © ® © 0 @
9 e © 0 @ @
9 © 0 ©'e e

E1 = {w | second dice is greater than 4 }
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Example: Rolling two dice

e

X

KA
o

ST e Xk S, 5 e o2 >
NILEBEEZLZIEIERE
<4

{w | first dice is less than 4 AND second dice is greater than 4}

Ezs=EiNE;s



Sat0te%s
ool
ettt

XSRS

Example: Rolling two dice
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Example: Rolling two dice
Events

©» @ @ @ @ @
@ ® @& ©® @& ©
@ @ @ @ @ @
@ ® @& ©@ @
@ @ ©® @ ®@ @
® © ® »w @& ©

E = {w | sum of the dice is odd }
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Example: Rolling two dice

Uniform probability function Pr(w) = 1/36

® ®® ® ® ©®
® ®® ® ® ©®
® ®® ® ®©®
® ®® ® ® ©®
©0 66 6 6

© 06066 60

Pr(E1) = »_ Pr(w) =

wEE

Wl
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Example: Rolling two dice

A different probability function Pr

CRCHCHCN N
ONCRCRTN M
@ @ e @ @
CRCHTERON N
Pr(E) = Y Pr(w) = o = 2 ~ 056

weE;



Random variables

e The states of the world are abstract objects without many structure
(e.g. a state of the world could be “Green Bay wins the Superbow!")

e We can add structure by mapping the states of the world into
mathematical objects, such as real numbers

Definition

Given a probability space, a random variable is a function x : Q — R
that assigns a real number to each possible state of the world



Example: Rolling two dice
Random variable

(2

© 0 © 6 ©
© 0 6 6
© 0 60 6
© 0 60 6
© 0 60 6

© 0 60 606 6 6

@ @ @ @

x1 = number from the first dice



Example: Rolling two dice
Random variable

© 0 66 6 G
© 6 66 6 G
© 60 6 6 G
© 6 6 6 G
© 60 6 6 G
© 60 66 6 G

x12 = number from the first dice squared



Example: Rolling two dice
Random variable

© 0 00 6 0 ©
© 0 60 o ©
© 0 60 6 6
© 60 606 0 6
© 0 60 6 ©
© 0 0 606 6

@ @ @ @

x» = number from the second dice



Example: Rolling two dice
Random variable

® ©
®

® ©
© 6 6 6
® 6 ®

®© 0 0 0 6 6
®© 0 0 0
© 0 O
© ©
©
©® ©

@ @

x3 = sum of the two dice = x1 + x»

©
©)
©)



Example: Rolling two dice
Random variable

© ® O 0 @
ONNORBNORBRORBONIO
@ © ® 0 @ ©
ORNORONECEN ORI
@ @ 9 @ @ @
@ @ @ @ @ @

x4 = arbitrarily assigned



Random variables vs. states of the world

If we where only interested in one random variable, we could
identify outcomes with the corresponding values

e Random variables are useful because we can define different
random variables in the same probability state

e This enables to ask questions about the relationship between
different random variables

e For instance, it is clear that if we learn something about xi, then
we automatically learn something about xZ and about x3 = x; + X2

e Furthermore, if we can somehow directly influence x;, then we can
indirectly influence x2 and x3



e Informally, the support of a random variable is the set of possible
values it can take

e For example
e The support of x; and x» is {1,2,3,4,5,6}
e The support of x7 is {1, 4,9, 16, 25, 36}
e The support of x5 is {2,3,4,5,6,7,8,9,10, 11, 12}

A random variable is discrete if its support is finite (or countable)

A random variable is continuous otherwise



Distribution for discrete random variables

e The probability distribution of a random variable specifies the
probability of each value in its support:

Pr(x:g)zPr({w | x(w)zg})

e The cumulative probability distribution of £ is the probability that
the value of x is less or equal than &:

F©) =Prix< &) =Pr({w | xw) <¢})

=Y Prx=0)
cex
¢<¢

where X denotes the support of x



Example: Rolling two dice

Uniform probability distributions

¢ 1 2 3 4 5 6
1 1 1 1 1 1
Pri=€ § 5 & & 5 &
1 2 3 4 5
Prxx<€) 5 5§ & & & !
Pr(xy =§) Pr(xy <€)
1.00 A+ 1.00 A ~—
*——o
0.75 o 0.75 A
—
0.50 - 0.50 A1 —o
—
0.25 A 0.25 A1
T T T T T T 13 ? T T T T T 3




Example: Rolling two dice

Non-uniform probability distributions

£ 2 3 5 5 6 7 8 9 10 11 12
_ 1 2 3 4 5 6 5 4 3 2 1
PrOs=€) 3 3% 3 3 3 36 36 36 36 36 6
1 3 6 10 15 21 26 30 33 35
PrOs <€) 3 3% 3 3 36 3 36 3 3% 30 1
Pr(xz =¢§) Pr(xz <€)
1.00 ] 1.00 4 —s—
—
—
0.75 - 075 - s
-
0.50 1 0.50 1
o
0.25 o 0.25 4 -
. *~—0
Lot e, -
S ¢ 3= .
12345678 910111213 12345678 910111213



Example: Bernouli distribution

Suppose you flip a coin and x is the random variable which assigns
1 to heads and O to talil

The probability function is described by a single paramenter p: the
probability of a head (p = 1/2 for fair coins)

The probability distribution of x is:

Pr(x=1)=p and Prix=0)=1-p

The cumulative probability distribution is:

0 if £€<0
F(¢)=< 1—p if 0<¢é<1
1 if £€>1



Probability for continuous random variables

The cumulative distribution is defined as before

F(§) = Prix <¢)

The probability density f(x) describes the rate at which probability
is accumulated

The Probability that x is between &; and & corresponds to the
area below the graph of f between &; and &,

e Using calculus f = dF/d€§ and:

&
Pr(€: < x < £2) = F(€2) — F(E1) = [i F(C) d



Example: Normal standard distribution
Density function

f(£)

(—€%/2)




Example: Normal standard distribution
Area under the curve

f(£)
(—€2/2)

Pr(é: <

&



Expected value

e The expected value, mean or expectation is a measure of centrality

e For discrete random variable it is given by:

o =B[x] =) Pr(x=¢)-¢

gex

e The expected value of a function of a discrete random variable is:

E[f(x)] =) Pr(x=¢§)-f(¢)

gex
e The expected value is a linear operator meaning that:

E[lax+ by] =aE[x]+ bE[y]



Variance

e The variance of a random variable is a measure of dispersion

e |t is defined in terms of expectations:

07 =V[x]=E[(x — px)?]
e A useful way to compute variance is using the formula:
02 =E[x*] - i

e The variance satisfies:

Vix+y]=V[x]+V[y]+2C[x, y]
V[ax] = a®V|[x]



Example: Rolling two dice

Expectation and variance of x;

¢ 1 2 3 4 5 6
Pa=6 5 1 & & b &
Pa<e) L 3 3 4 2 o1

E[x1]=Pr(x=1)-1+Pr(x=2)-2+...4+Pr(x=6)-6
1 2 3 4 5 6 21

E[x]=Pr(x=1)-1>+Pr(x=2)-2° + ... + Pr(x = 6) - 62
1 4 9 16 30 36 21

“sTeTeteTets "6 ~1°

Vix]=E[x] - (E[x])* =16 - 12.25 =3.75



Example: Rolling two dice

Expectation and variance of x3

¢ > 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 5 4 3 2 1
Prbs=€) 3 3% 3 3 3 36 36 36 36 3 36
1 3 6 10 15 21 26 30 33 35
Prbs<€) 3 3% 3 3% 36 3 3 3 3 3 !
E[X]*2+6+12+2O+ L2252
173 "3 36 3 3 36

1 2 3 4 1 1974
E[6]=a 24+ F+0 &+ 5+ +=12°=—+—

36 36 36 36 36 3 0083



Example: Normal distribution N(u, o?)

_=w?
202

‘ Changing u
Changing o2



Conditional probability

e Knowing information about one event (or random variable) may
convey information about other events (or random variables)

e e.g. if we know that x; > 3 then we know that X11 =0 and that
X3 = X1 + Xo 2 6

Baye's rule
The conditional probability of E given F is:

Pr(E and F)

Pr(EIF) = 5



Independence

e Two events are independent if the occurrence of one of them does
not affect the probability of the other

e |n terms of conditional probability this means that:
Pr(E|F) = Pr(E)

e Using Baye's rule, £ and F are independent if and only if:

Pr(E and F) = Pr(E) - Pr(F)
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Joint and marginal distributions

e et x and y be random variables on the same probability space

e The joint distribution of x and y specifies for each pair of numbers
& and 9 the probability:

Pr(XZEandyzw):Pr<{w|x(w)=£and}/(w)=¢})

e The marginal distributions Pr(x = &) and Pr(y = ¢) can be
obtained from the joint:

Priy =9) =Y Pr(x=_¢and y =)
geX

e The converse is false: the joint distribution cannot be obtained
from the marginals



Example: Rolling two dice

Joint and marginal distributions

x1 =1 xp =2 x1 =3 x] =4 x31 =5 x1 =06
x5 =2 1/36 0 0 0 0 0 1/36
X3 = 1/36 1/36 0 0 0 0 2/36
x5 =4 1/36 1/36  1/36 0 0 0 3/36
x3 =5 1/36 1/36  1/36  1/36 0 0 4/36
x3 =6 1/36 1/36  1/36  1/36  1/36 0 5/36
X3 = 1/36  1/36  1/36  1/36  1/36  1/36 | 6/36
x3 =8 0 1/36  1/36  1/36 1/36  1/36 | 5/36
x3=09 0 0 1/36  1/36  1/36  1/36 | 4/36
x3 = 10 0 0 0 1/36  1/36  1/36 | 3/36
x3 =11 0 0 0 0 1/36  1/36 | 2/36
x3 = 12 0 0 0 0 0 1/36 | 1/36
1/6 1/6 1/6 1/6 1/6 1/6




Example: Rolling two dice

Joint and marginal distributions

x> =1 xXp =2 xo =3 xp =4 xo =5 xXp =06

xx=1 | 1/36 1/36 1/36 1/36 1/36  1/36 | 1/6
xx=2 | 1/36 1/36 1/36 1/36  1/36  1/36 | 1/6
xx=3 | 1/36 1/36 1/36 1/36  1/36  1/36 | 1/6
xx=4 | 1/36 1/36  1/36 1/36  1/36  1/36 | 1/6
xx=5 | 1/36 1/36  1/36 1/36  1/36  1/36 | 1/6
xx=6 | 1/36 1/36  1/36 1/36 1/36  1/36 | 1/6

1/6 1/6 1/6 1/6 1/6 1/6



Example: Rolling two dice

Same marginals different joint

x1 =1 xp =2 x1 =3 x] =4 x1 =5 x1 =06

xi =1 1/6 0 0 0 0 0 1/6
X1 =2 0 1/6 0 0 0 0 1/6
x1 =3 0 0 1/6 0 0 0 1/6
x1 =4 0 0 0 1/6 0 0 1/6
x1 =5 0 0 0 0 1/6 0 1/6
x1 =6 0 0 0 0 0 1/6 1/6

1/6 1/6 1/6 1/6 1/6 1/6



Example

Same marginals different joint

y=1 y=2 y=3 y=4 y=5 y=6
x=1 | 1/12 0 0 0 0 1/12 | 1/6
x| = /12 1/12 0 0 0 0 1/6
X = 0 /12 1/12 0 0 0 1/6
Xy = 0 0 /12 1/12 0 0 1/6
X = 0 0 0 /12 1/12 0 1/6
Xy = 0 0 0 0 /12 1/12 | 1/6

1/6 1/6 1/6 1/6 1/6 1/6



Conditional distributions and independence

e Just like conditional probabilities, we can define conditional
distributions as:

Pr(x =& and y =)
Pr(y =)

Prix=¢ly =9) =

e And say that x and y are independent if:

Pr(x =¢ly = 4) =Pr(x =¢)

e Independence is equivalent to requiring that the joint distribution
equals the product of the marginals:

Prix=_¢andy =9) =Pr(x =£) - Pr(y =)
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x1 and x3 are NOT independent



Example: Rolling two dice

Conditional distributions

~
©
—
o
N
&
w
o)

I3 1

POz =€) 1
Prix? =€x=1) 1
Pr(x2=¢|x =2) 0
Pr(x? =€x1=3) 0
0

0

0

Pr(x2 = ¢xq = 4)
Pr(x? = £|x1 = 5)
Pr(xf = €lx = 6)

o O O O = O aor
O O O +H O O o+
O O B O O O o+
O B O O O O o+
H O O O O O o+

x1 and xf are NOT independent



Example: Rolling two dice

Conditional distributions

¢ 1 2 3 4 5 6
Prixe = §) § § § § § 3
SCRT TR S N
Pa=ga=2 1 3 5 4 b
o= =3 & L 111
Po=tu=0 } 3 3 3 3 3
LCRTUEDIEE N
Proe=¢€a=6) ¢ § & & & &

x1 and x» are independent



Covariance

The covariance of a random variable is a measure of the linear
association between them

It is defined in terms of expectations:

Oy = Clx, y] = B[ (x = w)(y — py) ]

A useful way to compute covariance is using the formula:

Oxy = E[xy] — pxpy

e For every random variable C[x, x] = 02
e For every two random variables C[x, y] = C[y, x]



Correlation

The correlation is a normalization of the covariance:

Oxy
0x0y

Pxy =

The correlation always is between —1 and 1

e x and y are uncorrelated if py, =0

Independence implies uncorrelation

Uncorrelation does NOT imply independence

Correlation only measures linear association

Correlation means linear association, NOT slope

Correlation does NOT imply a causal relation



Example: Rolling two dice

Variance-covariance matrix

2

X1 X2 X1 X3 X4

[3.00] [3.00] [153.40] [6.00] [53.93]
x1 0.333 0.000 0.046 0.167 0.008
xp 0.000 0.333 0.000 0.167 0.001
X12 0.046 0.000 0.007 0.023 0.001
x3 0.167 0.167 0.023 0.167 0.005
x4 0.008 0.001 0.001 0.005 0.019




Example: Rolling two dice

Correlation matrix

2

X1 X2 X1 X3 X4

[3.00] [3.00] [153.40] [6.00] [53.93]
x; 1.000 0.000 0.979 0.707 0.107
xp 0.000 1.000 0.000 0.707 0.009
X12 0.979 0.000 1.000 0.692 0.062
x3 0.707 0.707 0.692 1.000 0.082
x4 0.107 0.009 0.062 0.082 1.000
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Example

Random sample

x3

2
X1

x2

X1

13
11

16

13

16

33

36

36

3.3

36

10
11
12
13
14
15
16
17

7.5

33
35

36

36

36

19
20
21

42

22
23
24
25
26
27
2

10

36

33

36

8
29
30

7.5




Example: Rolling two dice

Scatterplots

x2 X12
6 9 o 36 .
p=0
51 ° . 30 1 p=o0097
44 o o e . 24 A
3 4 e o o o 18 A
.
2 4 o o o . 12 4
o
14 e . 6 1
o
— > X1 >
1 2 3 4 5 6 1 2 3 4 5 6
X3 X4
.
12 1 12 4
o .
10 1 p=071 ° 10 1 p=0.11
8 4 . . 8 -
.
. o o . .
6 A e o o 6 -
o o o
4 A o« o 4 H . .
B . 8 s
2 4 e 2 4
.
— > — X




Example: Scatterplots

Correlation

L)
%o o y
L3 A
R
,\._ - p=-08 4
7 'o'. e . 7
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o
1 ce 0 8t 1
1 o 8% 1
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Example: Scatterplots

Correlation and independence

y y
A A .
. 1]
1%
| ,.. "
o seeg” . . | '& .
>0l "os : o
..: R s [y . $
> P e 'Y ¢
L4 % >
LY . e )
o "’.' 3388
X T x
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Statistical science

e Statistics is the science of using data to learn about the world
around us

e The main three objectives of statistics are:

e Estimation — quantifying relations between different variables
e Inference — testing whether theoretical relations hold in real life
e Forecasting — predicting the future realizations of variables

e For data to be useful we need to make assumptions on the
data-generating process



Random samples

Definition

A random sample is a sequence {x1, %o, ..., Xn} of mutually
independent and identically distributed (i.i.d.) random variables

o Mutual independence is more than pairwise independence
e |t is not sufficient that x; and x; are independent for all / and j
e The entire joint distribution should equal the product of the
marginal distributions
e Some examples of random samples

e The sequence of outcomes from repeating a random experiment
e The characteristics of different objects of a population selected
randomly

e Most of the course we will assume that datasets are realizations of
random samples



Statistics

A statistic is a function that maps each possible outcome of a random
sample to a real number

e Statistics are random variables (being functions of random
variables)

e The probability distribution of a statistic is called the sampling
distribution

e Most of the theory of Statistics is based on understanding sampling
distributions



Some commonly used statistics

e The ample mean X is the average value in the sample:

1 n
X:EH[X,]:EZX,
=1

e |f the random variables x; are normally distributed, then X has a Student
t-distribution

e The sample variance s?2 is the average deviation from the sample mean
Vo x] = B[ -] = 23 (-5 = Lx— )
S n

n <
i=1

e The jth order statistics x(;y is the jth highest value in the sample, e.g.:

Xy = max{x, x2, ..., Xn }



Example: Rolling two dice

Statistics

X1 X xf X3 X4
1 4 3 16 7 13
2 1 2 1 3 11
3 4 3 16 7 13
4 2 2 4 4 3
5 1 5 1 6 1
6 6 5 36 11 3.3
7 6 1 36 7 7
8 2 4 4 6 0
9 1 4 1 5 1
10 6 5 36 11 3.3
11 3 5 9 8 4
12 1 1 1 2 7.5
13 1 4 1 5 1
14 3 4 9 7 e
15 6 5 36 11 3.3
16 6 2 36 8 3.5
17 2 2 4 4 3
18 6 1 36 7 7
19 1 5 1 6 1
20 3 3 9 6 42
21 3 4 9 7 e
22 2 3 4 5 0
23 3 2 9 5 ™
24 1 3 1 4 4
25 6 4 36 10 0
Sample mean 3.20 3.28 14.08 6.48 5.62

Sample variance 4.00 1.88 212.66 5.84 71.28
Maximum 6 5 36 11 42




Example: Rolling two dice

Statistics (different sample)

X1 X xf X3 X4
1 4 2 16 6 6
2 1 6 1 7 0
3 4 3 16 7 13
4 3 3 9 6 42
5 1 1 1 2 7.5
6 5 6 25 11 11
7 2 6 4 8 7.8
8 1 3 1 4 4
9 3 3 9 6 42
10 5 3 25 8 e
11 3 5 9 8 4
12 4 2 16 6 6
13 6 6 36 12 12
14 6 2 36 8 35
15 1 3 1 4 4
16 4 1 16 5 3.6
17 5 3 25 8 e
18 6 2 36 8 3.5
19 4 1 16 5 3.6
20 3 3 9 6 42
21 5 4 25 9 9
22 5 4 25 9 9
23 4 6 16 10 10
24 3 5 9 8 4
25 1 6 1 7 0
Sample mean 3.56 3.56 15.32 7.12 10.12

Sample variance 2.76 3.01 129.48 5.03 156.06
Maximum 6 6 36 12 42




Empirical distribution

e A useful statistic is the sample relative frequency of each value in
the support:

#{xi | xi =&}

n

fn(g) =

e The collection of such statistics {f,(£)} constitutes a probability
distribution, its called the empirical distribution

e Empirical distributions are usually represented using histograms



Example: A strange random variable

Empirical distribution

Prix=6)
0.25

y;i ~ Uniform(0, 1)
0.20 x; = 5yI2

wx ~ 1.69
0.15

02~ 221




Approximating the sample distribution

e Except for rare cases (e.g. normal distributions), sample
distributions are difficult to obtain

e Sometimes they can be approximated using simulation methods
(bootstrap)

e Another approach for “large samples” is to approximate using
asymptotic distributions

e |t is much easier to determine what happens to the sampling
distribution when n becomes large



Example: A strange random variable

Bootstrap

e The distribution of x; is hard to obtain, the distribution of X is harder

e Simulate realizations of a random sample {x1, ..., Xn} with n = 25, and
compute X

e Repeat this process 120 times to generate an empirical distribution for X

Prx=6)

0.125 A
0.100 A
0.075 A
0.050 -

0.025

3.0



e \We are often interested in the quantitative values of unknown
parameters

e e.g. the mean number of defective products, the price elasticity of
demand, the gravitational acceleration

e \We want generate “good” estimates from the data

e An estimator estimator for a parameter is a statistic that is used as
a proxy for it's true value

e The realized value of an estimator is called an estimate

e Typically we use hats or Latin letters to denote estimators, e.g. €
and e for estimators of €



Desirable properties

We want our estimators to be both as accurate and as precise as possible
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Precise but inaccurate Accurate but imprecise



Desirable properties

e Accuracy
e Let 6 be an unknown parameter and 8 an estimator
e The bias of § is defined as E[6] — 6

e An estimator is unbiased if it has no bias, i.e. if E [é] =0

e Precision

e The variance of an estimator can be used as a measure of precision

e Given two unblased estimators 8 and 8, we say that 6 is more
efficient than 6 if V8] < V[8]

e An unbiased estimator is efficient if is more efficient than any other
unbiased estimator



The sample mean

e The sample mean is an unbiased estimator of the mean:

1« 1« 1
EE Xf]:EE E[Xf]:EE Px = fhx
i=1 i=1 i=1

E[%,] = E

e |ts variance is given by:

_ 1o 1 ¢ 1~ , 1,
V[XH]ZV EEIX,’ ZFEIV[X,]:FE O'X:EO'X
1= 1=

i=1

e The sample mean is the best linear unbiased estimator (BLUE) of
the mean



e |nstead of focusing finite sample properties we can ask for
asymptotic results

e Can we guarantee that our estimator will be both precise and
accurate if the sample is large enough?

e An estimator is consistent if it converges in probability to the true
value, we denote this as:

6 —6
p

e It means that the probability that 8 is far away from 6 becomes
arbitrarily small as the size of the sample increases

e Asymptotic efficiency is also important, but people focus on rate of
convergence instead



Law of large numbers

e The law of large number essentially states that the sample mean is
a consistent estimator of the mean

Law of large numbers

Given a random sample and a function h finite moments:

23" hx) — E[A()]

i=1

e The intuition here is that we can always write x; = uyx + €

e Every realization contains uy, and different errors cancel out

e For frequentist statistics, the LLN can be understood as the
definition of randomness itself
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Example: A strange random variable

Law of large numbers
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Hypotheses

e The second application of statistics is to test whether hypothetical
assertions hold in real life

e |n order to test an hypothesis we need to specify a counterfactual
alternative

e The conjectured hypothesis is called the null hypothesis .74
e The counterfactual is called the alternative hypothesis 777

e We will only consider null hypothesis of the form 6 = 6y or 6 > 6,
for some unknown parameter 8 and some number 6q

e Similar methodologies can be used to test much more complicated
hypothesis



e A test is a rule to decide whether to reject or not reject an
hypothesis based on the realized data

A test can be thought of as a statistic that takes the values 1 (for
not reject) and 0 (for reject)

Not rejecting does NOT mean accepting

e |t means that there is not sufficient evidence to disprove the
hypothesis

e |t does not mean that there is enough evidence to prove it

Most tests use a test statistic t, and an acceptance region C

The rule is to accept if and only if the realized value of t liesin C



Methodology

e Suppose that we want to test the hypothesis
Iy 0=09 vs. J4: 0 F 0O

and we have a consistent estimator 0

e The logic is to ask, if it where true that 6 = 6p, then what would
be the probability of observing the actual/realized sample?

o We know that & will be close to 6
e Under the null hypothesis 6 should be close to 6

e Hence we can reject the null hypothesis if the distance | — 6] is
large enough



p-vaule

e What does ‘large enough’ mean?

e The p-value is the probability, under 743, of drawing a test statistic
at least as adverse to 7 as the realized one

e |n our example, it is the probability that
00| > |6 60|
where 62¢ is the actual realized value of §

e The p-value is a statistic measuring how likely is the realized
sample under 7%

e |t quantifies ‘large enough’ in terms of probabilities
e We still have to choose a threshold probability to reject 74



Choosing a significance level

There are two things that can go wrong in testing an hypothesis:

e Type | Error — Rejecting a true hypothesis
e Type Il Error — Not rejecting a false hypothesis

There is a trade-off between type | and type Il errors

o Significance — Probability of type | error under 7%
e Power — Probability of not committing type Il error under JA4

Usually: choose significance and then maximize power

This approach requires knowing the sampling distribution of the
test statistic



Central limit theorem

e Under very mild conditions, the asymptotic distribution of X is
normal independently of the distribution of x

Central limit theorem

For any random sample with finite moments, the distribution of
\/nx approaches N(ux, 02) when n becomes large

e If we normalize z = (x — y)/0x then the distribution of \/nZz
approaches N(0,1)

e This is an amazing result that is not intuitive at all

e Why should exp>/2 /27 be the function that describes any data
generating process?

e |t is extremely powerful because it means that we do not need to
make parametric assumptions when we have large samples!
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Law of large numbers
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Example: A strange random variable

Central limit theorem

n=10 n=25 n =50

-4 -2 2 4 -4 -2 2 4 -4 -2 2 4

n =100 n =200

-4 -2 2 4



Hypothesis about the mean

O Ux =M VS, JA: Ux F M

() e e (5

Sx

e Under % the asymptotic distribution of t is N(0, 1)

e A test of significance a is to reject 74 if:

[t] >t =71 ((1-)/2)

f(€)

(1-a)/2 (1-a)/2

T T
v oV



One sided hypothesis

O x <M VS, JA: Ux > M

() e e (5

e Under % the asymptotic distribution of t is N(0, 1)

e A test of significance a is to reject 74 if:

t>tY =9 (a)

f(€)
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