Review of probability and statistics

ECON306 – Slides 1 Stock and Watson Ch. 2–3

Bruno Salcedo

The Pennsylvania State University

Summer 2013

[0]

1 Probability review

Randomness and uncertainty Random variables Independence and correlation

Statistics review Random samples and statistics Estimation Inference

Phenomena involving chance

- Rolling a dice to see which number comes out on top
- Tomorrow's weather
- The winner of the Superbowl
- The price of a ton of wheat on a given location at a given time
- The value of $sin(\pi^2)$ (uncertainty)
- The exact temperature of a CPU (random number generators)

Randomness (frequentist)

- An experiment is an activity that:
 - Is performed with the intention of measuring the value of a variable
 - The environment can be replicated, so that the experiment can be repeated
- An experiment is said to be random when the outcome of each realization cannot be predicted
- The probability of an outcome is defined as the proportion of times that the outcome would result if the experiment were repeated infinitely many times

Uncertainty (Bayesian)

- An event is uncertain if its occurrence is unknown
 - Many conceivable worlds are consistent with our observations
 - We are often ignorant of many characteristics of the actual world
- People constantly make choices under uncertainty
 - A is more likely than B for you, if you would prefer vetting on A than betting on B
 - If enough comparisons are made, we can recover quantitative probabilities from subjective beliefs (Savage, 1954)
- The frequentist approach is objective
- The Bayesian approach is subjective

Probability (mathematical)

Definition

A probability space consists of states, events and probabilities:

• A set of possible states of the world (or outcomes)

$$\Omega = \{\omega_1, \omega_2, \dots \omega_m\}$$

- An event is a set of states $E \subseteq \Omega$
- A probability function or measure Pr is a function that assigns a number Pr(E) to each event E
- Probability functions must satisfy:
 - 0 < Pr(E) < 1
 - $Pr(\Omega) = 1$ and $Pr(\emptyset) = 0$
 - If $E \cap F = 0$ then $Pr(E \cup F) = Pr(E) + Pr(F)$

Probability of an event

- Let $E = \{\omega_1, \omega_2, \dots, \omega_k\} \subseteq \Omega$ be an event
- Notice that we can write *E* as the union of singleton events:

$$E = \{\omega_1\} \cup \{\omega_2\} \cup \ldots \cup \{\omega_k\}$$

- Also notice that if $\omega_i \neq \omega_j$, then $\{\omega_i\} \cap \{\omega_j\} = \emptyset$
- The probability of E thus equals the sum of the probability of its elements

$$\begin{aligned} \Pr(E) &= \sum_{\omega \in E} \Pr(\{\omega\}) \\ &= \Pr(\{\omega_1\}) + \Pr(\{\omega_2\}) + \ldots + \Pr(\{\omega_k\}) \end{aligned}$$

• Implication: to specify a probability function Pr, it is sufficient to specify the probability of singleton events $\{\omega\}$

State space Ω

Events

 $E_1 = \{ \omega \mid \text{ second dice is greater than 4 } \}$

Events

 $E_2 = \{ \omega \mid \text{ first dice is less than 4 } \}$

 $E_3 = E_1 \cap E_3 = \{ \omega \mid \text{first dice is less than 4 AND second dice is greater than 4} \}$

 $E_3 = E_1 \cup E_3 = \{ \omega \mid \text{first dice is less than 4 OR second dice is greater than 4} \}$

Uniform probability function $Pr(\omega) = 1/36$

Uniform probability function $Pr(\omega) = 1/36$

A different probability function Pr

A different probability function Pr

Random variables

- The states of the world are abstract objects without many structure (e.g. a state of the world could be "Green Bay wins the Superbowl")
- We can add structure by mapping the states of the world into mathematical objects, such as real numbers

Definition

Given a probability space, a random variable is a function $x:\Omega\to\mathbb{R}$ that assigns a real number to each possible state of the world

Random variables vs. states of the world

- If we where only interested in one random variable, we could identify outcomes with the corresponding values
- Random variables are useful because we can define different random variables in the same probability state
- This enables to ask questions about the relationship between different random variables
- For instance, it is clear that if we learn something about x_1 , then we automatically learn something about x_1^2 and about $x_3 = x_1 + x_2$
- Furthermore, if we can somehow directly influence x_1 , then we can indirectly influence x_1^2 and x_3

Support

- Informally, the support of a random variable is the set of possible values it can take
- For example
 - The support of x_1 and x_2 is $\{1, 2, 3, 4, 5, 6\}$
 - The support of x_1^2 is $\{1, 4, 9, 16, 25, 36\}$
 - The support of x_3 is $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- A random variable is discrete if its support is finite (or countable)
- A random variable is continuous otherwise

Distribution for discrete random variables

• The probability distribution of a random variable specifies the probability of each value in its support:

$$Pr(x = \xi) = Pr\left(\left\{\omega \mid x(\omega) = \xi\right\}\right)$$

• The cumulative probability distribution of ξ is the probability that the value of x is less or equal than ξ :

$$F(\xi) = \Pr(x \le \xi) = \Pr\left(\left\{\omega \mid x(\omega) \le \xi\right\}\right)$$
$$= \sum_{\substack{\zeta \in X \\ \zeta \le \xi}} \Pr(x = \zeta)$$

where X denotes the support of x

Uniform probability distributions

ξ	1	2	3	4	5	6
$\Pr(x_1 = \xi)$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> 6
$\Pr(x_1 \leq \xi)$	$\frac{1}{6}$	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	1

Non-uniform probability distributions

ξ	2	3	5	5	6	7	8	9	10	11	12
$Pr(x_3 = \xi)$	<u>1</u> 36	<u>2</u> 36	<u>3</u> 36	<u>4</u> 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	<u>4</u> 36	<u>3</u> 36	<u>2</u> 36	<u>1</u> 36
$\Pr(x_3 \leq \xi)$	<u>1</u> 36	<u>3</u> 36	<u>6</u> 36	10 36	<u>15</u> 36	<u>21</u> 36	<u>26</u> 36	30 36	33 36	<u>35</u> 36	1

Example: Bernouli distribution

- Suppose you flip a coin and x is the random variable which assigns 1 to heads and 0 to tail
- The probability function is described by a single parameter p: the probability of a head (p = 1/2 for fair coins)
- The probability distribution of *x* is:

$$Pr(x = 1) = p$$
 and $Pr(x = 0) = 1 - p$

• The cumulative probability distribution is:

$$F(\xi) = \begin{cases} 0 & \text{if } \xi < 0\\ 1 - p & \text{if } 0 \le \xi < 1\\ 1 & \text{if } \xi \ge 1 \end{cases}$$

Probability for continuous random variables

The cumulative distribution is defined as before

$$F(\xi) = \Pr(x \le \xi)$$

- The probability density f(x) describes the rate at which probability is accumulated
- The Probability that x is between ξ_1 and ξ_2 corresponds to the area below the graph of f between ξ_1 and ξ_2
- Using calculus $f = dF/d\xi$ and:

$$\Pr(\xi_1 \le x \le \xi_2) = F(\xi_2) - F(\xi_1) = \int_{\xi_1}^{\xi_2} f(\zeta) \, d\zeta$$

Example: Normal standard distribution

Density function

Example: Normal standard distribution

Area under the curve

Expected value

- The expected value, mean or expectation is a measure of centrality
- For discrete random variable it is given by:

$$\mu_{\mathsf{x}} = \mathbb{E}[\,\mathsf{x}\,] = \sum_{\xi \in \mathsf{X}} \mathsf{Pr}(\mathsf{x} = \xi) \cdot \xi$$

• The expected value of a function of a discrete random variable is:

$$\mathbb{E}[f(x)] = \sum_{\xi \in X} \Pr(x = \xi) \cdot f(\xi)$$

• The expected value is a linear operator meaning that:

$$\mathbb{E}[ax + by] = a\mathbb{E}[x] + b\mathbb{E}[y]$$

Variance

- The variance of a random variable is a measure of dispersion
- It is defined in terms of expectations:

$$\sigma_x^2 = \mathbb{V}[x] = \mathbb{E}[(x - \mu_x)^2]$$

• A useful way to compute variance is using the formula:

$$\sigma_x^2 = \mathbb{E}\left[x^2\right] - \mu_x^2$$

• The variance satisfies:

$$V[x+y] = V[x] + V[y] + 2C[x, y]$$
$$V[ax] = a^2V[x]$$

Expectation and variance of x_1

$$\mathbb{E}[x_1] = \Pr(x=1) \cdot 1 + \Pr(x=2) \cdot 2 + \dots + \Pr(x=6) \cdot 6$$
$$= \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6} = \frac{21}{6} = 3.5$$

$$\mathbb{E}\left[x_1^2\right] = \Pr(x=1) \cdot 1^2 + \Pr(x=2) \cdot 2^2 + \dots + \Pr(x=6) \cdot 6^2$$
$$= \frac{1}{6} + \frac{4}{6} + \frac{9}{6} + \frac{16}{6} + \frac{30}{6} + \frac{36}{6} = \frac{21}{6} = 16$$

$$\mathbb{V}[x_1] = \mathbb{E}[x_1^2] - (\mathbb{E}[x_1])^2 = 16 - 12.25 = 3.75$$

Expectation and variance of x_3

$$\mathbb{E}[x_3] = \frac{2}{36} + \frac{6}{36} + \frac{12}{36} + \frac{20}{36} + \dots + \frac{12}{36} = \frac{252}{36} = 7$$

$$\mathbb{E}\left[x_3^2\right] = \frac{1}{36} \cdot 2^2 + \frac{2}{36} \cdot 3^2 + \frac{3}{36} \cdot 4^2 + \frac{4}{36} \cdot 5^2 + \dots + \frac{1}{36} \cdot 12^2 = \frac{1974}{36} = 58.8\overline{3}$$

$$V[x_3] = \mathbb{E}[x_3^2] - (\mathbb{E}[x_3])^2 = 58.8\overline{3} - 49 = 9.8\overline{3}$$

Example: Normal distribution $N(\mu, \sigma^2)$

Conditional probability

- Knowing information about one event (or random variable) may convey information about other events (or random variables)
- e.g. if we know that $x_1 \ge 3$ then we know that $x_1^1 = 9$ and that $x_3 = x_1 + x_2 \ge 6$

Baye's rule

The conditional probability of E given F is:

$$Pr(E|F) = \frac{Pr(E \text{ and } F)}{Pr(F)}$$

Independence

- Two events are <u>independent</u> if the occurrence of one of them does not affect the probability of the other
- In terms of conditional probability this means that:

$$Pr(E|F) = Pr(E)$$

• Using Baye's rule, E and F are independent if and only if:

$$Pr(E \text{ and } F) = Pr(E) \cdot Pr(F)$$

Conditional probabilities

$$\Pr(E_1|E_4) = \frac{\Pr(E_1 \cap E_4)}{\Pr(E_4)} = \frac{1/3}{2/3} = \frac{1}{2}$$

Independent events

$$\Pr(E_1|E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)} = \frac{1/6}{1/3} = \frac{1}{3} = \Pr(E_1)$$

Joint and marginal distributions

- Let x and y be random variables on the same probability space
- The joint distribution of x and y specifies for each pair of numbers ξ and ψ the probability:

$$\Pr(x = \xi \text{ and } y = \psi) = \Pr(\{\omega \mid x(\omega) = \xi \text{ and } y(\omega) = \psi\})$$

• The marginal distributions $Pr(x = \xi)$ and $Pr(y = \psi)$ can be obtained from the joint:

$$\Pr(y = \psi) = \sum_{\xi \in X} \Pr(x = \xi \text{ and } y = \psi)$$

 The converse is false: the joint distribution cannot be obtained from the marginals

Joint and marginal distributions

	$x_1 = 1$	$x_1 = 2$	$x_1 = 3$	$x_1 = 4$	$x_1 = 5$	$x_1 = 6$	
$x_3 = 2$	1/36	0	0	0	0	0	1/36
$x_3 = 3$	1/36	1/36	0	0	0	0	2/36
$x_3 = 4$	1/36	1/36	1/36	0	0	0	3/36
$x_3 = 5$	1/36	1/36	1/36	1/36	0	0	4/36
$x_3 = 6$	1/36	1/36	1/36	1/36	1/36	0	5/36
$x_3 = 7$	1/36	1/36	1/36	1/36	1/36	1/36	6/36
$x_3 = 8$	0	1/36	1/36	1/36	1/36	1/36	5/36
$x_3 = 9$	0	0	1/36	1/36	1/36	1/36	4/36
$x_3 = 10$	0	0	0	1/36	1/36	1/36	3/36
$x_3 = 11$	0	0	0	0	1/36	1/36	2/36
$x_3 = 12$	0	0	0	0	0	1/36	1/36
	1/6	1/6	1/6	1/6	1/6	1/6	

Joint and marginal distributions

	$x_2 = 1$	$x_2 = 2$	$x_2 = 3$	$x_2 = 4$	$x_2 = 5$	$x_2 = 6$	
$x_1 = 1$ $x_1 = 2$ $x_1 = 3$ $x_1 = 4$ $x_1 = 5$ $x_1 = 6$	1/36 1/36 1/36 1/36 1/36 1/36	1/36 1/36 1/36 1/36 1/36 1/36	1/36 1/36 1/36 1/36 1/36 1/36	1/36 1/36 1/36 1/36 1/36 1/36	1/36 1/36 1/36 1/36 1/36 1/36	1/36 1/36 1/36 1/36 1/36 1/36	1/6 1/6 1/6 1/6 1/6 1/6
	1/6	1/6	1/6	1/6	1/6	1/6	

Same marginals different joint

	$x_1 = 1$	$x_1 = 2$	$x_1 = 3$	$x_1 = 4$	$x_1 = 5$	$x_1 = 6$	
$x_1 = 1$ $x_1 = 2$ $x_1 = 3$ $x_1 = 4$ $x_1 = 5$	1/6 0 0 0	0 1/6 0 0	0 0 1/6 0	0 0 0 1/6 0	0 0 0 0 1/6	0 0 0 0	1/6 1/6 1/6 1/6 1/6
$x_1 = 6$	0	0	0	0	0	1/6	1/6
	1/6	1/6	1/6	1/6	1/6	1/6	

Example

Same marginals different joint

	y = 1	y = 2	y = 3	y = 4	y = 5	y = 6	
$x_1 = 1$ $x_1 = 2$ $x_1 = 3$ $x_1 = 4$ $x_1 = 5$ $x_1 = 6$	1/12 1/12 0 0 0	0 1/12 1/12 0 0	0 0 1/12 1/12 0 0	0 0 0 1/12 1/12 0	0 0 0 0 1/12 1/12	1/12 0 0 0 0 0 1/12	1/6 1/6 1/6 1/6 1/6 1/6
	1/6	1/6	1/6	1/6	1/6	1/6	

Conditional distributions and independence

 Just like conditional probabilities, we can define conditional distributions as:

$$\Pr(x = \xi | y = \psi) = \frac{\Pr(x = \xi \text{ and } y = \psi)}{\Pr(y = \psi)}$$

• And say that x and y are independent if:

$$\Pr(x = \xi | y = \psi) = \Pr(x = \xi)$$

• Independence is equivalent to requiring that the joint distribution equals the product of the marginals:

$$\Pr(x = \xi \text{ and } y = \psi) = \Pr(x = \xi) \cdot \Pr(y = \psi)$$

Conditional distributions

ξ	2	3	5	5	6	7	8	9	10	11	12
$Pr(x_3 = \xi)$	1 36	<u>2</u> 36	<u>3</u> 36	<u>4</u> 36	<u>5</u> 36	6 36	<u>5</u> 36	4 36	3 36	<u>2</u> 36	1 36
$\Pr(x_3=\xi x_1=1)$	$\frac{1}{6}$	$\frac{1}{6}$	<u>1</u>	<u>1</u>	$\frac{1}{6}$	<u>1</u>	0	0	0	0	0
$\Pr(x_3=\xi x_1=2)$	0	$\frac{1}{6}$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0	0	0	0
$\Pr(x_3 = \xi x_1 = 3)$	0	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0	0	0
$\Pr(x_3=\xi x_1=4)$	0	0	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0	0
$\Pr(x_3 = \xi x_1 = 5)$	0	0	0	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	0
$\Pr(x_3 = \xi x_1 = 6)$	0	0	0	0	0	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	$\frac{1}{6}$

 x_1 and x_3 are NOT independent

Conditional distributions

ξ	1	4	9	16	25	36
$\Pr(x_1^2 = \xi)$	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
$\Pr(x_1^2 = \xi x_1 = 1)$	1	0	0	0	0	0
$\Pr(x_1^2 = \xi x_1 = 2)$	0	1	0	0	0	0
$\Pr(x_1^2 = \xi x_1 = 3)$	0	0	1	0	0	0
$\Pr(x_1^2 = \xi x_1 = 4)$	0	0	0	1	0	0
$\Pr(x_1^2 = \xi x_1 = 5)$	0	0	0	0	1	0
$\Pr(x_1^2 = \xi x_1 = 6)$	0	0	0	0	0	1

 x_1 and x_1^2 are NOT independent

Conditional distributions

ξ	1	2	3	4	5	6
$Pr(x_2 = \xi)$ $Pr(x_2 = \xi x_1 = 1)$ $Pr(x_2 = \xi x_1 = 2)$	1 6 1 6 1 6	1 6 1 6 1 6	1 6 1 6 1 6	1 6 1 6 1 6	1 6 1 6 1 6	1 6 1 6
$Pr(x_2 = \xi x_1 = 3)$ $Pr(x_2 = \xi x_1 = 4)$ $Pr(x_2 = \xi x_1 = 5)$ $Pr(x_2 = \xi x_1 = 6)$	1 6 1 6 1 6 1 6	1 6 1 6 1 6 1 6	1 6 1 6 1 6 1 6	1 6 1 6 1 6 1 6	16 16 16 16 16	16 16 16 16

 x_1 and x_2 are independent

Covariance

- The covariance of a random variable is a measure of the linear association between them
- It is defined in terms of expectations:

$$\sigma_{xy} = \mathbb{C}[x, y] = \mathbb{E}[(x - \mu_x)(y - \mu_y)]$$

• A useful way to compute covariance is using the formula:

$$\sigma_{xy} = \mathbb{E}[xy] - \mu_x \mu_y$$

- For every random variable $\mathbb{C}[x, x] = \sigma_x^2$
- For every two random variables $\mathbb{C}[x, y] = \mathbb{C}[y, x]$

Correlation¹

• The correlation is a normalization of the covariance:

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

- The correlation always is between -1 and 1
- x and y are uncorrelated if $\rho_{xy} = 0$
- Independence implies uncorrelation
- Uncorrelation does NOT imply independence
- Correlation only measures linear association
- Correlation means linear association, NOT slope
- Correlation does NOT imply a causal relation

Variance-covariance matrix

	X ₁ [3.00]	X ₂ [3.00]	<i>x</i> ₁ ² [153.40]	<i>X</i> 3 [6.00]	<i>X</i> 4 [53.93]
x ₁	0.333	0.000	0.046	0.167	0.008
x ₂	0.000	0.333	0.000	0.167	0.001
x ₁ ²	0.046	0.000	0.007	0.023	0.001
x ₃	0.167	0.167	0.023	0.167	0.005
x ₄	0.008	0.001	0.001	0.005	0.019

Correlation matrix

	X ₁ [3.00]	X ₂ [3.00]	<i>X</i> ₁ ² [153.40]	<i>X</i> 3 [6.00]	<i>X</i> 4 [53.93]
x ₁	1.000	0.000	0.979	0.707	0.107
x ₂	0.000	1.000	0.000	0.707	0.009
x ₁ ²	0.979	0.000	1.000	0.692	0.062
x ₃	0.707	0.707	0.692	1.000	0.082
x ₄	0.107	0.009	0.062	0.082	1.000

Random sample

	x_1	<i>x</i> ₂	x_1^2	<i>x</i> ₃	<i>x</i> ₄
1	4	3	16	7	13
2	1	2	1	3	11
3	4	3	16	7	13
4	2	2	4	4	3
5	1	5	1	6	1
6	6	5	36	11	3.3
7	6	1	36	7	7
8	2	4	4	6	0
9	1	4	1	5	1
10	6	5	36	11	3.3
11	3	5	9	8	4
12	1	1	1	2	7.5
13	1	4	1	5	1
14	3	4	9	7	e
15	6	5	36	11	3.3
16	6	2	36	8	3.5
17	2	2	4	4	3
18	6	1	36	7	7
19	1	5	1	6	1
20	3	3	9	6	42
21	3	4	9	7	e
22	2	3	4	5	0
23	3	2	9	5	π
24	1	3	1	4	4
25	6	4	36	10	0
26	3	2	9	5	π
27	6	5	36	11	3.3
28	1	6	1	7	0
29	2	3	4	5	0
30	1	1	1	2	7.5

Scatterplots

Example: Scatterplots

Correlation

Example: Scatterplots

Correlation and independence

[0]

Probability review
 Randomness and uncertainty
 Random variables
 Independence and correlation

2 Statistics review

Random samples and statistics Estimation Inference

Statistical science

- Statistics is the science of using data to learn about the world around us
- The main three objectives of statistics are:
 - **Estimation** quantifying relations between different variables
 - Inference testing whether theoretical relations hold in real life
 - Forecasting predicting the future realizations of variables
- For data to be useful we need to make assumptions on the data-generating process

Random samples

Definition

A random sample is a sequence $\{x_1, x_2, \dots, x_n\}$ of mutually independent and identically distributed (i.i.d.) random variables

- Mutual independence is more than pairwise independence
 - It is not sufficient that x_i and x_j are independent for all i and j
 - The entire joint distribution should equal the product of the marginal distributions
- Some examples of random samples
 - The sequence of outcomes from repeating a random experiment
 - The characteristics of different objects of a population selected randomly
- Most of the course we will assume that datasets are realizations of random samples

Statistics

Definition

A statistic is a function that maps each possible outcome of a random sample to a real number

- Statistics are random variables (being functions of random variables)
- The probability distribution of a statistic is called the sampling distribution
- Most of the theory of Statistics is based on understanding sampling distributions

Some commonly used statistics

• The ample mean \bar{x} is the average value in the sample:

$$\bar{x} = \mathbb{E}_n[x_i] = \frac{1}{n} \sum_{i=1}^n x_i$$

- If the random variables x_i are normally distributed, then \bar{x} has a Student t-distribution
- The sample variance s_x^2 is the average deviation from the sample mean

$$s_x^2 = V_n[x_i] = \mathbb{E}_n[(x_i - \bar{x})^2] = \frac{1}{n}\sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n}\bar{x}(1 - \bar{x})$$

• The jth order statistics $x_{(j)}$ is the jth highest value in the sample, e.g.:

$$x_{(1)} = \max\{x_1, x_2, \dots, x_n\}$$

Statistics

	<i>x</i> ₁	<i>x</i> ₂	x_1^2	X3	<i>x</i> ₄
1	4	3	16	7	13
2	1	2	10	3	11
3	4	3	16	7	13
4	2	2	4	4	3
5	1	5	1	6	1
6	6	5	36	11	3.3
7	6	1	36	7	3.3 7
8		4	30 4	6	0
	2		1		
9 10	6	4	1 36	5	1
	3	5		11	3.3
11		5	9	8	4
12	1	1	1	2	7.5
13	1	4	1	5	1
14	3	4	9	7	е
15	6	5	36	11	3.3
16	6	2	36	8	3.5
17	2	2	4	4	3
18	6	1	36	7	7
19	1	5	1	6	1
20	3	3	9	6	42
21	3	4	9	7	е
22	2	3	4	5	0
23	3	2	9	5	π
24	1	3	1	4	4
25	6	4	36	10	0
Sample mean	3.20	3.28	14.08	6.48	5.62
Sample variance	4.00	1.88	212.66	5.84	71.28
Maximum	6	5	36	11	42

Statistics (different sample)

	x_1	<i>x</i> ₂	x_1^2	<i>x</i> ₃	× ₄
1	4	2	16	6	6
2	1	6	1	7	0
3	4	3	16	7	13
4	3	3	9	6	42
5	1	1	1	2	7.5
6	5	6	25	11	11
7	2	6	4	8	7.8
8	1	3	1	4	4
9	3	3	9	6	42
10	3 5	3	25	8	e
11	3	5	9	8	4
12	4	2	16	6	6
13	6	2 6	36	12	12
14	6	2	36	8	3.5
15	1	3	1	4	4
16	4	1	16	5	3.6
17	5	3	25	8	e
18	6	2	36	8	3.5
19	4	1	16	5	3.6
20	3	3	9	6	42
21	5	4	25	9	9
22	5	4	25	9	9
23	4	6	16	10	10
24	3	5	9	8	4
25	1	6	1	7	0
Sample mean	3.56	3.56	15.32	7.12	10.12
Sample variance	2.76	3.01	129.48	5.03	156.06
Maximum	6	6	36	12	42

Empirical distribution

• A useful statistic is the sample relative frequency of each value in the support:

$$f_n(\xi) = \frac{\#\{x_i \mid x_i = \xi\}}{n}$$

- The collection of such statistics $\{f_n(\xi)\}$ constitutes a probability distribution, its called the empirical distribution
- Empirical distributions are usually represented using histograms

Example: A strange random variable

Empirical distribution

Approximating the sample distribution

- Except for rare cases (e.g. normal distributions), sample distributions are difficult to obtain
- Sometimes they can be approximated using simulation methods (bootstrap)
- Another approach for "large samples" is to approximate using asymptotic distributions
- It is much easier to determine what happens to the sampling distribution when *n* becomes large

Example: A strange random variable

• The distribution of x_i is hard to obtain, the distribution of \bar{x} is harder

- Simulate realizations of a random sample $\{x_1, \ldots, x_n\}$ with n=25, and compute \bar{x}
- Repeat this process 120 times to generate an empirical distribution for \bar{x}

Estimators

- We are often interested in the quantitative values of unknown parameters
- e.g. the mean number of defective products, the price elasticity of demand, the gravitational acceleration
- We want generate "good" estimates from the data
- An estimator estimator for a parameter is a statistic that is used as a proxy for it's true value
- The realized value of an estimator is called an estimate
- Typically we use hats or Latin letters to denote estimators, e.g. $\hat{\varepsilon}$ and e for estimators of ε

Desirable properties

We want our estimators to be both as accurate and as precise as possible

Precise but inaccurate

Accurate but imprecise

Desirable properties

Accuracy

- Let θ be an unknown parameter and $\hat{\theta}$ an estimator
- The bias of $\hat{\theta}$ is defined as $\mathbb{E}\left[\hat{\theta}\right] \theta$
- An estimator is unbiased if it has no bias, i.e. if $\mathbb{E}\left[\hat{\theta}\right] = \theta$

Precision

- The variance of an estimator can be used as a measure of precision
- Given two unbiased estimators $\hat{\theta}$ and $\tilde{\theta}$, we say that $\hat{\theta}$ is more efficient than $\tilde{\theta}$ if $\mathbb{V} \lceil \hat{\theta} \rceil \leq \mathbb{V} \lceil \tilde{\theta} \rceil$
- An unbiased estimator is efficient if is more efficient than any other unbiased estimator

The sample mean

• The sample mean is an unbiased estimator of the mean:

$$\mathbb{E}[\bar{x}_n] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n x_i\right] = \frac{1}{n}\sum_{i=1}^n \mathbb{E}[x_i] = \frac{1}{n}\sum_{i=1}^n \mu_x = \mu_x$$

Its variance is given by:

$$\mathbb{V}[\bar{x}_n] = \mathbb{V}\left[\frac{1}{n}\sum_{i=1}^n x_i\right] = \frac{1}{n^2}\sum_{i=1}^n \mathbb{V}[x_i] = \frac{1}{n^2}\sum_{i=1}^n \sigma_x^2 = \frac{1}{n}\sigma_x^2$$

 The sample mean is the best linear unbiased estimator (BLUE) of the mean

Consistency

- Instead of focusing finite sample properties we can ask for asymptotic results
- Can we guarantee that our estimator will be both precise and accurate if the sample is large enough?
- An estimator is consistent if it converges in probability to the true value, we denote this as:

$$\hat{\theta} \xrightarrow{p} \theta$$

- It means that the probability that $\hat{\theta}$ is far away from θ becomes arbitrarily small as the size of the sample increases
- Asymptotic efficiency is also important, but people focus on rate of convergence instead

Law of large numbers

 The law of large number essentially states that the sample mean is a consistent estimator of the mean

Law of large numbers

Given a random sample and a function h finite moments:

$$\frac{1}{n}\sum_{i=1}^n h(x_i) \xrightarrow{p} \mathbb{E}[h(x)]$$

- The intuition here is that we can always write $x_i = \mu_x + \varepsilon$
- ullet Every realization contains $\mu_{\scriptscriptstyle X}$, and different errors cancel out
- For frequentist statistics, the LLN can be understood as the definition of randomness itself

Example: A strange random variable

Law of large numbers

Hypotheses¹

- The second application of statistics is to test whether hypothetical assertions hold in real life
- In order to test an hypothesis we need to specify a counterfactual alternative
- The conjectured hypothesis is called the null hypothesis \mathcal{H}_0
- ullet The counterfactual is called the alternative hypothesis \mathscr{H}_1
- We will only consider null hypothesis of the form $\theta = \theta_0$ or $\theta \ge \theta_0$ for some unknown parameter θ and some number θ_0
- Similar methodologies can be used to test much more complicated hypothesis

Testing

- A test is a rule to decide whether to reject or not reject an hypothesis based on the realized data
- A test can be thought of as a statistic that takes the values 1 (for not reject) and 0 (for reject)
- Not rejecting does NOT mean accepting
 - It means that there is not sufficient evidence to disprove the hypothesis
 - It does not mean that there is enough evidence to prove it
- Most tests use a test statistic t, and an acceptance region C
- The rule is to accept if and only if the realized value of t lies in C

Methodology

Suppose that we want to test the hypothesis

$$\mathcal{H}_0$$
: $\theta = \theta_0$ vs. \mathcal{H}_1 : $\theta \neq \theta_0$

and we have a consistent estimator $\hat{\theta}$

- The logic is to ask, if it where true that $\theta = \theta_0$, then what would be the probability of observing the actual/realized sample?
- We know that $\hat{\theta}$ will be close to θ
- Under the null hypothesis $\hat{\theta}$ should be close to θ_0
- Hence we can reject the null hypothesis if the distance $|\hat{\theta} \theta_0|$ is large enough

p-vaule

- What does 'large enough' mean?
- The *p*-value is the probability, under \mathcal{H}_0 , of drawing a test statistic at least as adverse to \mathcal{H}_0 as the realized one
- In our example, it is the probability that

$$\left|\hat{\theta} - \theta_0\right| \ge \left|\hat{\theta}^{ac} - \theta_0\right|$$

where $\hat{ heta}^{\mathrm{ac}}$ is the actual realized value of $\hat{ heta}$

- The *p*-value is a statistic measuring how likely is the realized sample under \mathcal{H}_0
- It quantifies 'large enough' in terms of probabilities
- ullet We still have to choose a threshold probability to reject \mathcal{H}_0

Choosing a significance level

- There are two things that can go wrong in testing an hypothesis:
 - Type I Error Rejecting a true hypothesis
 - Type II Error Not rejecting a false hypothesis
- There is a trade-off between type I and type II errors
 - **Significance** Probability of type I error under \mathcal{H}_0
 - Power Probability of not committing type II error under \mathcal{H}_1
- Usually: choose significance and then maximize power
- This approach requires knowing the sampling distribution of the test statistic

Central limit theorem

• Under very mild conditions, the asymptotic distribution of \bar{x} is normal independently of the distribution of x

Central limit theorem

For any random sample with finite moments, the distribution of $\sqrt{n}\bar{x}$ approaches $N(\mu_x, \sigma_x^2)$ when n becomes large

- If we normalize $z=(x-\mu_x)/\sigma_x$ then the distribution of $\sqrt{n}\,\bar{z}$ approaches N(0,1)
- This is an amazing result that is not intuitive at all
- Why should $\exp^{-x/2}/\sqrt{2\pi}$ be the function that describes any data generating process?
- It is extremely powerful because it means that we do not need to make parametric assumptions when we have large samples!

Example: A strange random variable

Law of large numbers

Example: A strange random variable

Central limit theorem

Hypothesis about the mean

$$\mathscr{H}_0$$
: $\mu_{\mathsf{x}} = m$ vs. \mathscr{H}_1 : $\mu_{\mathsf{x}} \neq m$
$$t = \sqrt{n} \, \left(\frac{\bar{\mathsf{x}}^{\mathsf{ac}} - m}{\sigma_{\mathsf{x}}} \right) \qquad \text{or} \qquad t = \sqrt{n} \, \left(\frac{\bar{\mathsf{x}}^{\mathsf{ac}} - m}{s_{\mathsf{x}}} \right)$$

- Under \mathcal{H}_0 the asymptotic distribution of t is N(0,1)
- A test of significance α is to reject \mathcal{H}_0 if:

$$|t| > t^{cv} = \Phi^{-1}((1-\alpha)/2)$$

One sided hypothesis

$$\mathscr{H}_0$$
: $\mu_{\scriptscriptstyle X} \leq m$ vs. \mathscr{H}_1 : $\mu_{\scriptscriptstyle X} > m$

$$t = \sqrt{n} \, \left(rac{ar{x}^{\mathrm{ac}} - m}{\sigma_{\mathrm{x}}}
ight) \qquad \mathrm{or} \qquad t = \sqrt{n} \, \left(rac{ar{x}^{\mathrm{ac}} - m}{s_{\mathrm{x}}}
ight)$$

- Under \mathcal{H}_0 the asymptotic distribution of t is N(0, 1)
- A test of significance α is to reject \mathcal{H}_0 if:

$$t > t^{cv} = \Phi^{-1}(\alpha)$$

