#### Estimating linear models

ECON306 - Slides 2 Studenmund Ch. 1-3

Bruno Salcedo

The Pennsylvania State University



June 2013

[0]

1 Linear models

Linear regression Stochastic linear regression Using linear models

Ordinary least squares

3 Analysis of variance

#### Functional relations

- Quantitative characteristics of the world are usually entangled in functional relations
- A regression or model specifies an explained variable as a function of an explanatory variable

$$y = f(x)$$

- y regressand, response variable, explained variable, dependant variable, outcome
- x regressor, predictor variable, explanatory variable, independent variable, control

## Example: Quadratic regression



#### Rate of change

$$\Delta x = x_1 - x_0$$
  $\Delta y = y_1 - y_0 = f(x_1) - f(x_0)$ 

• The rate of change measures how y responds to changes in x

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

It depends both on the initial point and the magnitude of the change



#### Rate of change

$$\Delta x = x_1 - x_0$$
  $\Delta y = y_1 - y_0 = f(x_1) - f(x_0)$ 

ullet The rate of change measures how y responds to changes in x

$$\frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

It depends both on the initial point and the magnitude of the change



#### Linear models

• A model is linear if it can be written as:

$$y = \beta_0 + \beta_1 x$$

• Which means that the graph of the regression is a (straight) line





### Slope coefficient



#### Slope coefficient

• The slope of a linear model equals  $\beta_0$  independently of  $x_0$  and  $\Delta x$ 

$$\frac{\Delta y}{\Delta x} = \frac{y_1 - y_0}{x_1 - x_0}$$

$$= \frac{(\beta_0 + \beta_1 x_1) - (\beta_0 + \beta_1 x_0)}{x_1 - x_0}$$

$$= \frac{(\beta_0 - \beta_0) + (\beta_1 x_1 - \beta_1 x_0)}{x_1 - x_0}$$

$$= \frac{0 + \beta_1 (x_1 - x_0)}{x_1 - x_0}$$

$$= \beta_1 \frac{x_1 - x_0}{x_1 - x_0} = \beta_1$$

#### The linearity assumption

- The linearity assumption is less restrictive than it appears
- The following model is clearly nonlinear

$$y = \log(\gamma_0 x^{\gamma_1})$$

However after some relabelling:

$$\beta_0 = \log(\gamma_0)$$
$$\beta_1 = \gamma_1$$
$$z = \log(x)$$

• We obtain a linear model

$$y = \log(\gamma_0 x^{\gamma_1}) = \log(\gamma_0) + \gamma_1 \log(x) = \beta_0 + \beta_1 z$$

#### Approximating non-linear models

• Supose that the true relationship between x and y is given by

$$y = f(x)$$

 We can always abstract from non potential linearities and use a linear model

$$\tilde{y} = \beta_0 + \beta_1 x \approx f(x) = y$$

• If *f* is not linear, then the approximation will be inexact and there will be approximation errors

$$\varepsilon = y - \tilde{y}$$

## Approximating non-linear models



#### Multivariate regressions

• The value of the response variable may be a function of many regressors

$$y = f(x_1, x_2, \ldots, x_k)$$

• We can still have linear models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$$

 In this case, each coefficient β<sub>i</sub> is still a measure of change holding every other variable constant

$$\frac{\Delta y}{\Delta x_i} = \beta_i$$

For multivariate regressions linearity assumes separability

#### Unobserved variables

We may not know or observe all the variables which affect y

$$y = \beta_0 + \beta_1 x_1 + \underbrace{\beta_2 x_2 + \ldots + \beta_k x_k}_{\text{unobserved}}$$

We can still approximate y with the variables that we do observe

$$\tilde{y} = \beta_0 + \beta_1 x_1 \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k = y$$

 As before, this approximation is inexact and has an approximation error

$$\varepsilon = y - \tilde{y} = \beta_2 x_2 + \ldots + \beta_k x_k$$

#### Stochastic regression

- Most of the time there is uncertainty because (at least)
  - We are not certain about the linearity of a regression
  - We cannot list all the relevant regressors
- Uncertainty is captured by a stochastic error term  $\varepsilon$

$$y = \beta_0 + \beta_1 x + \varepsilon$$

•  $\beta_0 + \beta_1 x$  is called the deterministic component of the model

#### Stochastic regression

- Assume that the error has zero mean conditional on x
- Then the deterministic component corresponds to the mean of y conditional on x

$$\mathbb{E}[y|x] = \mathbb{E}[\beta_0 + \beta_1 x + \varepsilon | x]$$
  
= 
$$\mathbb{E}[\beta_0 | x] + \mathbb{E}[\beta_1 x | x] + \mathbb{E}[\varepsilon | x] = \beta_0 + \beta_1 x$$

 Then slope coefficient measures the average per-unit effect of changes in x over the average value of y conditional on x

$$\mathbb{E}[y|x_1] - \mathbb{E}[y|x_0] = (\beta_0 + \beta_1 x_1) - (\beta_0 + \beta_1 x_0)$$
  
=  $\beta_1(x_1 - x_0)$ 

#### Random samples

- We are usually interested in different observations coming from
  - Cross-sectional different sources
  - **Time series** a single source at different times
  - Panel data different time series from different sources
- We assume that the data comes from a random sample  $\{x_i, y_i, \varepsilon_i\}$
- $x_i$  and  $y_i$  are observed but  $\varepsilon_i$  is not
- In fact we have a collection of equations

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

In case of a multivariate regression

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

#### Predictions and residuals

- Suppose that we have estimates  $\hat{eta}_0$  and  $\hat{eta}_1$
- The estimated model is then:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

 Given an estimated model, for each realization of x<sub>i</sub> the predicted value of y<sub>i</sub> is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• The corresponding residual is:

$$e_i = y_i - \hat{y}_i$$

• Notice we cannot guarantee that  $e_i=arepsilon_i$  unless we know  $eta_0$  and  $eta_1$ 

### Example: a linear regression

Errors vs. Residuals



# Example: height and weight

- Contest game:
  - If you guess the weight of a participant within 10lb of the actual weight, you get paid \$2
  - Otherwise you have to pay him/her \$3
- You could use height (observable) to estimate the weight

WEIGHT<sub>i</sub> = 
$$\beta_0 + \beta_1$$
HEIGHT<sub>i</sub> +  $\varepsilon_i$ 

- Given estimated coefficients  $\hat{\beta}_0 = 103.4$  and  $\hat{\beta}_1 = 6.38$
- You can make predictions

$$\widehat{\text{WEIGHT}}_i = 103.4 + 6.38 \, \text{HEIGHT}_i$$

### Example: height and weight

Predictions  $\cdot$  observations  $\cdot$  residuals

|    | HEIGHT; | WEIGHT; | WEIGHT; | $e_i$ | Profit |
|----|---------|---------|---------|-------|--------|
| 1  | 5       | 140     | 135.3   | 4.7   | 2      |
| 2  | 9       | 157     | 160.8   | -3.8  | 2      |
| 3  | 13      | 205     | 186.3   | 18.7  | -3     |
| 4  | 12      | 198     | 180.0   | 18.0  | -3     |
| 5  | 10      | 162     | 167.2   | -5.2  | 2      |
| 6  | 11      | 174     | 173.6   | 0.4   | 2      |
| 7  | 8       | 150     | 154.4   | -4.4  | 2      |
| 8  | 9       | 165     | 160.8   | 4.2   | 2      |
| 9  | 10      | 170     | 167.2   | 2.8   | 2      |
| 10 | 12      | 180     | 180.0   | 0.0   | 2      |
| 11 | 11      | 170     | 173.6   | -3.6  | 2      |
| 12 | 9       | 162     | 160.8   | 1.2   | 2      |
| 13 | 10      | 165     | 167.2   | -2.2  | 2      |
| 14 | 12      | 180     | 180.0   | 0.0   | 2      |
| 15 | 8       | 160     | 154.4   | 5.6   | 2      |
| 16 | 9       | 155     | 160.8   | -5.8  | 2      |
| 17 | 10      | 165     | 167.2   | -2.2  | 2      |
| 18 | 15      | 190     | 199.1   | -9.1  | 2      |
| 19 | 13      | 185     | 186.3   | -1.3  | 2      |
| 20 | 11      | 155     | 173.6   | -18.6 | -3     |

#### Example: height and weight

Predictions · observations · residuals



[0]

Linear models
 Linear regression
 Stochastic linear regression
 Using linear models

Ordinary least squares

3 Analysis of variance

#### Estimating linear models

- Begin from dataset coming from a random sample  $\{x_1, y_i\}$
- We assume that x and y are related by a model:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- We do not observe  $\varepsilon_i$
- We do not know the true coefficients  $\beta_0$  and  $\beta_1$
- Our objective now is to generate estimates  $\hat{\beta}_0$  and  $\hat{\beta}_1$  of these coefficients to obtain an estimated model

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

### Example: linear regresion

Data generating process



#### Example: linear regresion

The 'best' linear model



### Example: linear regresion

The 'closest' linear model



#### The 'best' linear model

- Two uses for the estimated model:
  - **Prediction** Given  $x_i$ ,  $y_i$  should be around  $\hat{y}_i$
  - **Policy** Controlling  $x_i$ ,  $y_i$  react on average according to:

$$\Delta y_i = \beta_1 \Delta x_i \approx \hat{\beta}_1 \Delta x_i$$

- Policy implications only make sense if we establish causality
- Better policy implications when  $\hat{\beta}_1 \approx \beta_1$  and  $e \approx 0$
- Better predictions when  $y_i \approx \hat{y}_i$ , i.e. when the residuals are small

#### Residual variance

• We wish to have small residuals:

$$e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

- Small means in magnitude not sign
- Minimize the total sum of of squared residuals:

RSS = 
$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

#### Ordinary least squares

#### Definition

Given a data set, the ordinary least squares (OLS) estimates of  $\beta_0$  and  $\beta_1$ , are the umbers  $\hat{\beta}_0$  and  $\hat{\beta}_1$  which minimize the sum of squared residuals:

$$RSS = \sum_{i=1}^{n} \left( y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2$$

The OLS estimated model is:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

# Examples: OLS



### Computing OLS

When  $\beta_1 = 0$ 

• Suppose that we know that  $\beta_1 = 0$ , i.e.

$$y_i = \beta_0 + \varepsilon_i$$

• The sum of residuals is then:

RSS = 
$$\sum (y_i - \hat{\beta}_0)^2 = \sum y_i^2 - 2\hat{\beta}_0 \sum y_i + n\hat{\beta}_0^2$$
  
= $K - 2n\hat{\beta}_0 \bar{y} + n\hat{\beta}_0^2 = K + n\hat{\beta}_0 (\hat{\beta}_0 - 2\bar{y})$ 

- Which is minimized when  $\hat{\beta}_0 = \bar{y}$  (see next slide)
- ullet  $ar{y}$  is indeed a natural estimator given  $eta_0 = \mathbb{E}[\,y\,]$

### Minimizing quadratic functions



#### Computing OLS

When  $\beta_0 = 0$ 

• Now suppose that we know that  $\beta_0 = 0$ , i.e.

$$y_i = \beta_1 x_i + \varepsilon_i$$

• The sum of residuals is then:

RSS = 
$$\sum (y_i - \hat{\beta}_1 x_i)^2 = \sum y_i^2 - 2\hat{\beta}_1 \sum x_i y_i + \hat{\beta}_1^2 \sum x_i^2$$
  
=  $K + \hat{\beta}_0 (\hat{\beta}_0 \sum x_i y_i - 2 \sum x_i^2)$ 

• In this case we obtain:

$$\hat{\beta}_1 = \frac{\sum x_i y_i}{\sum x_i^2}$$

#### The need for an intercept

- Most of the time we will be interested in  $\beta_1$  rather than  $\beta_0$
- One could simply estimate

$$y_i = \beta_1 x_i + \varepsilon_i$$

• But if  $\hat{\beta}_0 \neq 0$  we may get bad estimates





#### Computing OLS

#### OLS formulas

In the general case, the OLS estimates are given by:

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- Notice that  $\hat{\beta}_1$  looks like a sample analogue of  $\sigma_v^2 \cdot \rho_{xv}$
- The OLS estimates guarantee that  $\sum e_i = 0$

# Example: height and weight

Computing OLS

|      | Xi  | Уi   | $x_i - \bar{x}$ | $y_1 - \bar{y}$ | $(x_i - \bar{x})^2$ | $(x_i - \bar{x})(y_i - \bar{y})$ |
|------|-----|------|-----------------|-----------------|---------------------|----------------------------------|
| 1    | 5   | 140  | -5.35           | -29.40          | 28.62               | 157.29                           |
| 2    | 9   | 157  | -1.35           | -12.40          | 1.82                | 16.74                            |
| 3    | 13  | 205  | 2.65            | 35.60           | 7.02                | 94.34                            |
| 4    | 12  | 198  | 1.65            | 28.60           | 2.72                | 47.19                            |
| 5    | 10  | 162  | -0.35           | -7.40           | 0.12                | 2.59                             |
| 6    | 11  | 174  | 0.65            | 4.60            | 0.42                | 2.99                             |
| 7    | 8   | 150  | -2.35           | -19.40          | 5.52                | 45.59                            |
| 8    | 9   | 165  | -1.35           | -4.40           | 1.82                | 5.94                             |
| 9    | 10  | 170  | -0.35           | 0.60            | 0.12                | -0.21                            |
| 10   | 12  | 180  | 1.65            | 10.60           | 2.72                | 17.49                            |
| 11   | 11  | 170  | 0.65            | 0.60            | 0.42                | 0.39                             |
| 12   | 9   | 162  | -1.35           | -7.40           | 1.82                | 9.99                             |
| 13   | 10  | 165  | -0.35           | -4.40           | 0.12                | 1.54                             |
| 14   | 12  | 180  | 1.65            | 10.60           | 2.72                | 17.49                            |
| 15   | 8   | 160  | -2.35           | -9.40           | 5.52                | 22.09                            |
| 16   | 9   | 155  | -1.35           | -14.40          | 1.82                | 19.44                            |
| 17   | 10  | 165  | -0.35           | -4.40           | 0.12                | 1.54                             |
| 18   | 15  | 190  | 4.65            | 20.60           | 21.62               | 95.79                            |
| 19   | 13  | 185  | 2.65            | 15.60           | 7.02                | 41.34                            |
| 20   | 11  | 155  | 0.65            | -14.40          | 0.42                | -9.36                            |
| mean | 10  | 169  | 0.00            | 0.00            | 4.63                | 29.51                            |
| sum  | 207 | 3388 | 0.00            | 0.00            | 92.55               | 590.20                           |

# Example: height and weight

Computing OLS

|      | Xi  | Уi   | $x_i - \bar{x}$ | $y_1 - \bar{y}$ | $(x_i - \bar{x})^2$ | $(x_i-\bar{x})(y_i-\bar{y})$ |
|------|-----|------|-----------------|-----------------|---------------------|------------------------------|
| 1    | 5   | 140  | -5.35           | -29.40          | 28.62               | 157.29                       |
| 2    | 9   | 157  | -1.35           | -12.40          | 1.82                | 16.74                        |
| 3    | 13  | 205  | 2.65            | 35.60           | 7.02                | 94.34                        |
| 4    | 12  | 198  | 1.65            | 28.60           | 2.72                | 47.19                        |
| 5    | 10  | 162  | -0.35           | -7.40           | 0.12                | 2.59                         |
| 6    | 11  | 174  | 0.65            | 4.60            | 0.42                | 2.99                         |
| 7    | 8   | 150  | -2.35           | -19.40          | 5.52                | 45.59                        |
| 8    | 9   | 165  | -1.35           | -4.40           | 1.82                | 5.94                         |
| 9    | 10  | 170  | -0.35           | 0.60            | 0.12                | -0.21                        |
| 10   | 12  | 180  | 1.65            | 10.60           | 2.72                | 17.49                        |
| 11   | 11  | 170  | 0.65            | 0.60            | 0.42                | 0.39                         |
| 12   | 9   | 162  | -1.35           | -7.40           | 1.82                | 9.99                         |
| 13   | 10  | 165  | -0.35           | -4.40           | 0.12                | 1.54                         |
| 14   | 12  | 180  | 1.65            | 10.60           | 2.72                | 17.49                        |
| 15   | 8   | 160  | -2.35           | -9.40           | 5.52                | 22.09                        |
| 16   | 9   | 155  | -1.35           | -14.40          | 1.82                | 19.44                        |
| 17   | 10  | 165  | -0.35           | -4.40           | 0.12                | 1.54                         |
| 18   | 15  | 190  | 4.65            | 20.60           | 21.62               | 95.79                        |
| 19   | 13  | 185  | 2.65            | 15.60           | 7.02                | 41.34                        |
| 20   | 11  | 155  | 0.65            | -14.40          | 0.42                | -9.36                        |
| mean | 10  | 169  | 0.00            | 0.00            | 4.63                | 29.51                        |
| sum  | 207 | 3388 | 0.00            | 0.00            | 92.55               | 590.20                       |

# Example: height and weight Computing OLS

| X  | $\bar{y}$ | $\sum (x_i - \bar{x})^2$ | $\sum (x_i - \bar{x})(y_i - \bar{y})$ |
|----|-----------|--------------------------|---------------------------------------|
| 10 | 169       | 92.55                    | 590.2                                 |

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{590.2}{92.55} \approx 6.38$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 169 - 6.38 \cdot 10 \approx 105.22$$

$$\hat{y}_i = 105.22 + 6.38x_i$$

# Example: Anscombe's quartet

Data

|            | (   | (a) (b |     | o)  | ) (c) |      | (d) |      |
|------------|-----|--------|-----|-----|-------|------|-----|------|
| i          | Xi  | Уi     | Xi  | Уi  | Xi    | Уi   | Xi  | Уi   |
| 1          | 5.0 | 6.4    | 5.0 | 7.3 | 5.0   | 6.0  | 4.0 | 5.3  |
| 2          | 4.0 | 5.6    | 4.0 | 6.5 | 4.0   | 5.4  | 4.0 | 4.6  |
| 3          | 6.5 | 6.1    | 6.5 | 7.0 | 6.5   | 10.2 | 4.0 | 6.2  |
| 4          | 4.5 | 7.0    | 4.5 | 7.0 | 4.5   | 5.7  | 4.0 | 7.1  |
| 5          | 5.5 | 6.7    | 5.5 | 7.4 | 5.5   | 6.2  | 4.0 | 6.8  |
| 6          | 7.0 | 8.0    | 7.0 | 6.5 | 7.0   | 7.1  | 4.0 | 5.6  |
| 7          | 3.0 | 5.8    | 3.0 | 4.9 | 3.0   | 4.9  | 4.0 | 4.2  |
| 8          | 2.0 | 3.4    | 2.0 | 2.5 | 2.0   | 4.3  | 9.5 | 10.0 |
| 9          | 6.0 | 8.7    | 6.0 | 7.3 | 6.0   | 6.5  | 4.0 | 4.4  |
| 10         | 3.5 | 3.9    | 3.5 | 5.8 | 3.5   | 5.1  | 4.0 | 6.3  |
| 11         | 2.5 | 4.5    | 2.5 | 3.8 | 2.5   | 4.6  | 4.0 | 5.5  |
| $\mu$      | 4.5 | 6.0    | 4.5 | 6.0 | 4.5   | 6.0  | 4.5 | 6.0  |
| $\sigma^2$ | 2.8 | 2.6    | 2.8 | 2.6 | 2.8   | 2.6  | 2.8 | 2.6  |

#### Example: Anscombe's quartet

Estimated models



#### Multivariate regressions

• The analysis extends to multivariate models

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + \varepsilon_i$$

- The interpretation is slightly different:  $\hat{\beta}_k$  indicates the response to changes in  $x_k$  holding other regressors constant
- OLS is defined in the same way: minimizing RSS
- The formulas require linear algebra
- OLS is never done by hand: we use computers

## Example: financial aid

Variables

- Response variable:
  - FINAID<sub>i</sub> grant per year to applicant i
- Regressors:
  - PARENT<sub>i</sub> feasible contributions from parents
  - HSRANK<sub>i</sub> GPA rank in high school
  - GENDER<sub>i</sub> gender dummy (1 if male and 0 if female)

# Example: financial aid

Dataset

|    | FINAID <sub>i</sub> | PARENT <sub>i</sub> | HSRANK <sub>i</sub> | GENDER <sub>i</sub> |
|----|---------------------|---------------------|---------------------|---------------------|
| 1  | 19640               | 0                   | 92                  | 0                   |
| 2  | 8325                | 9147                | 44                  | 1                   |
| 3  | 12950               | 7063                | 89                  | 0                   |
| 4  | 700                 | 33344               | 97                  | 1                   |
| 5  | 7000                | 20497               | 95                  | 1                   |
| 6  | 11325               | 10487               | 96                  | 0                   |
| 7  | 19165               | 519                 | 98                  | 1                   |
| 8  | 7000                | 31758               | 70                  | 0                   |
| 9  | 7925                | 16358               | 49                  | 0                   |
| 10 | 11475               | 10495               | 80                  | 0                   |
| 11 | 18790               | 0                   | 90                  | 0                   |
| 12 | 8890                | 18304               | 75                  | 1                   |
| 13 | 17590               | 2059                | 91                  | 1                   |
| 14 | 17765               | 0                   | 81                  | 0                   |
| 15 | 14100               | 15602               | 98                  | 0                   |
| 16 | 18965               | 0                   | 80                  | 0                   |
| 17 | 4500                | 22259               | 90                  | 1                   |
| 18 | 7950                | 5014                | 82                  | 1                   |
| 19 | 7000                | 34266               | 98                  | 1                   |
| 20 | 7275                | 11569               | 50                  | 0                   |
| 21 | 8000                | 30260               | 98                  | 1                   |
| 22 | 4290                | 19617               | 40                  | 1                   |
| 23 | 8175                | 12934               | 49                  | 1                   |
| 24 | 11350               | 8349                | 91                  | 0                   |
| 25 | 15325               | 5392                | 82                  | 1                   |

# Example: financial aid

Dataset cont'd

|    | $FINAID_i$ | $PARENT_i$ | HSRANK, | $GENDER_i$ |
|----|------------|------------|---------|------------|
| 26 | 22148      | 0          | 98      | 0          |
| 27 | 17420      | 3207       | 99      | 0          |
| 28 | 18990      | 0          | 90      | 0          |
| 29 | 11175      | 10894      | 97      | 0          |
| 30 | 14100      | 5010       | 59      | 0          |
| 31 | 7000       | 24718      | 97      | 1          |
| 32 | 7850       | 9715       | 84      | 1          |
| 33 | 0          | 64305      | 84      | 0          |
| 34 | 7000       | 31947      | 98      | 1          |
| 35 | 16100      | 8683       | 95      | 1          |
| 36 | 8000       | 24817      | 99      | 0          |
| 37 | 8500       | 8720       | 20      | 1          |
| 38 | 7575       | 12750      | 89      | 1          |
| 39 | 13750      | 2417       | 41      | 1          |
| 40 | 7000       | 26846      | 92      | 1          |
| 41 | 11200      | 7013       | 86      | 1          |
| 42 | 14450      | 6300       | 87      | 0          |
| 43 | 15265      | 3909       | 84      | 0          |
| 44 | 20470      | 2027       | 99      | 1          |
| 45 | 9550       | 12592      | 89      | 0          |
| 46 | 15970      | 0          | 57      | 0          |
| 47 | 12190      | 6249       | 84      | 0          |
| 48 | 11800      | 6237       | 81      | 0          |
| 49 | 21640      | 0          | 99      | 0          |
| 50 | 9200       | 10535      | 68      | 0          |
|    |            |            |         |            |

# Example: financial aid ols

• Estimated OLS model (ignoring GENDER and HSRANK):

$$FINAID_i = 15897 - 0.34 PARENT_i$$



# Example: financial aid ols

• Estimated OLS model (ignoring GENDER):

$$\widehat{\mathsf{FINAID}}_i = 8927 - 0.36 \, \mathsf{PARENT}_i + 87.4 \, \mathsf{HSRANK}_i$$



[0]

Linear models
 Linear regression
 Stochastic linear regression
 Using linear models

Ordinary least squares

3 Analysis of variance

#### Evaluating an estimated model

- Is the equation supported by sound theory/common sense?
- How well does the estimated model fit the data?
- Is the dataset reasonably large and accurate?
- Is OLS the best estimator to be used?
- Do estimated coefficients correspond to prior expectations?
- Are all the important variables included?
- In case we want to do policy: are the estimated parameters structural?

#### **Explained variation**

- Regressions are used to explain y
- ullet In particular, we wish to explain why/when is  $y_i$  different from  $\mu_y$
- The variation in y can be decomposed as:

$$y_i - \mu_y = \beta_0 + \beta_1 x_i + \varepsilon_i - \beta_0 - \beta_1 \mu_x$$

$$= \underbrace{\beta_1(x_i - \mu_x)}_{\text{explained}} + \underbrace{\varepsilon_i}_{\text{unexplained}}$$

• One way to evaluate models is to measure the proportion of the variance of *y* that we are able to explain

#### **Explained variation**

- Regressions are used to explain y
- In particular, we wish to explain why/when is  $y_i$  different from  $\bar{y}$
- The variation in y can be decomposed as:

$$y_i - \bar{y} = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i - \beta_0 - \beta_1 \bar{x}$$

$$= \underbrace{\beta_1(x_i - \bar{x})}_{\text{explained}} + \underbrace{e_i}_{\text{unexplained}}$$

• One way to evaluate <u>estimated</u> models is to measure the proportion of the variance of *y* that we are able to explain

# Example: Variance decomposition



#### Variance decomposition

$$TSS = \sum (y_i - \bar{y})^2 = \sum (\hat{y}_i + e_i - \bar{y})^2$$

$$= \sum (\hat{y}_i - \bar{y})^2 - 2 \sum e_i (\hat{y}_i - \bar{y}) + \sum e_i^2$$

$$= \underbrace{\sum (\hat{y}_i - \bar{y})^2}_{\text{explained}} + \underbrace{\sum e_i^2}_{\text{unexplained}}$$

## Goodness of fit $(R^2)$

- We have decomposed the total variation (TSS) into the explained variation (ESS) and the unexplained or residual variation (RSS)
- A measure of the explanatory power of the model is the proportion of explained variation

$$\mathsf{R}^2 = \frac{\mathsf{ESS}}{\mathsf{TSS}} = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}} = 1 - \frac{\sum e_i^2}{\sum (y_i - \bar{y})^2}$$

- The higher the R<sup>2</sup> the closer the model is to the data
- Since 0 < RSS < TSS we know that

$$0 < R^2 < 1$$

#### Interpreting the $R^2$

• The R<sup>2</sup> coefficient measures:

How much of the variation of y can be explained by the variation of x according to the estimated model

- It does NOT measure:
  - How linear/tight the relation between x ad y is (correlation)
  - The inclination of the estimated line (slope coefficient)
  - The strength of the causal relation between x and y

# Examples: $R^2$



## Example: height and weight

Computing OLS

|      | Xi  | Уi   | ŷ <sub>i</sub> | $y_i - \bar{y}$ | $(y_i - \bar{y})^2$ | $e_i$  | $e_i^2$ |
|------|-----|------|----------------|-----------------|---------------------|--------|---------|
| 1    | 5   | 140  | 135.3          | -29.40          | 864.36              | 4.70   | 22.09   |
| 2    | 9   | 157  | 160.8          | -12.40          | 153.76              | -3.80  | 14.44   |
| 3    | 13  | 205  | 186.3          | 35.60           | 1267.36             | 18.70  | 349.69  |
| 4    | 12  | 198  | 179.9          | 28.60           | 817.96              | 18.00  | 324     |
| 5    | 10  | 162  | 167.2          | -7.40           | 54.76               | -5.20  | 27.04   |
| 6    | 11  | 174  | 179.9          | 4.60            | 21.16               | 0.40   | 0.16    |
| 7    | 8   | 150  | 173.6          | -19.40          | 376.36              | -4.40  | 19.36   |
| 8    | 9   | 165  | 160.8          | -4.40           | 19.36               | 4.20   | 17.64   |
| 9    | 10  | 170  | 167.2          | 0.60            | 0.36                | 2.80   | 7.84    |
| 10   | 12  | 180  | 179.9          | 10.60           | 112.36              | 0.00   | 0       |
| 11   | 11  | 170  | 173.7          | 0.60            | 0.36                | -3.60  | 12.96   |
| 12   | 9   | 162  | 160.8          | -7.40           | 54.76               | 1.20   | 1.44    |
| 13   | 10  | 165  | 167.2          | -4.40           | 19.36               | -2.20  | 4.84    |
| 14   | 12  | 180  | 179.9          | 10.60           | 112.36              | 0.00   | 0       |
| 15   | 8   | 160  | 154.4          | -9.40           | 88.36               | 5.60   | 31.36   |
| 16   | 9   | 155  | 160.8          | -14.40          | 207.36              | -5.80  | 33.64   |
| 17   | 10  | 165  | 167.2          | -4.40           | 19.36               | -2.20  | 4.84    |
| 18   | 15  | 190  | 199.1          | 20.60           | 424.36              | -9.10  | 82.81   |
| 19   | 13  | 185  | 186.3          | 15.60           | 243.36              | -1.30  | 1.69    |
| 20   | 11  | 155  | 173.6          | -14.40          | 207.36              | -18.60 | 345.96  |
| mean | 10  | 169  | 170.70         | 0.00            | 253.24              | 0.00   | 65.09   |
| sum  | 207 | 3388 | 3413.90        | 0.00            | 5064.80             | 0.00   | 1301.8  |

 $R^2 = 1 - 1301.8/5064.80 \approx 0.743$ 

#### Adding more regressors

- What would happen to our model if we add a new regressor  $x_2$ ?
- Recall that OLS minimizes RSS:

$$RSS = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i})^2$$

- Adding a new regressor adds a degree of freedom (we can always set  $\hat{\beta}_2=0$ ) and hence always decreases RSS
- This implies that adding a regressor always decreases the R<sup>2</sup> coefficient even if y is almost independent from it!

## $\bar{R}^2$ – Adjusted $R^2$

- Having more data or more variables improves the R<sup>2</sup> because it increases the degrees of freedom
- The adjusted R<sup>2</sup> controls for this bias:

$$\bar{R}^2 = 1 - \frac{\sum e_i^2 / (n - k - 1)}{\sum (y_i - \bar{y})^2 / (n - 1)}$$

where:

- n − number of observations (sample size)
- *k* number of regressors
- $\bar{R}^2 = R^2$  when k = 1 and  $\bar{R}^2 \approx R^2$  when n is very large

### ANOVA

|          | Number of obs |    |            | R-squared<br>Adj R-squared |      |       |
|----------|---------------|----|------------|----------------------------|------|-------|
| •        | Partial SS    |    | MS         | F                          | Prol | b > F |
| Model    |               | 7  |            |                            | 0    | .0000 |
| x1       | 3.125         | 1  | 3.125      | 4.05                       | 0    | .0554 |
| x2       | 194.50        | 3  | 64.8333333 | 84.11                      | 0    | .0000 |
| x3  <br> | 19.375        | 3  | 6.45833333 | 8.38                       | 0    | .0006 |
| Residual | 18.50         |    | .770833333 |                            |      |       |
| Total    | 235.50        | 31 | 7.59677419 |                            |      |       |

#### Example: water supply

Variables

- Response variable:
  - WATER<sub>i</sub> water consumed in period i
- Regressors:
  - PRICE<sub>i</sub> price of water in period i
  - $POP_i$  population in period i
  - RAIN<sub>i</sub> rainfall during period i

$$\widehat{\text{WATER}}_i = 24000 + 0.62 \text{POP} - 400 \text{RAIN}$$
  $\bar{R}^2 = 0.847$