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@ Lincar models



Functional relations

Quantitative characteristics of the world are usually entangled in
functional relations

e A regression or model specifies an explained variable as a function
of an explanatory variable

y =f(x)

e y — regressand, response variable, explained variable, dependant
variable, outcome

e x — regressor, predictor variable, explanatory variable, independent
variable, control



Example: Quadratic regression
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y=0.1x2-03x+2




Rate of change

Ax =x1 — Xo Ay =y1 —yo = f(x1) — f(x0)

e The rate of change measures how y responds to changes in x

Ay  f(xa) —f(x) _ flxo+Ax) — f(x)
Ax  x1— X0 o Ax

e |t depends both on the initial point and the magnitude of the change

y
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Linear models

e A model is linear if it can be written as:

y = Bo + Bix

e Which means that the graph of the regression is a (straight) line
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Slope coefficient

y =240.6x




Slope coefficient

e The slope of a linear model equals By independently of xg and Ax

Ay _»n—y
Ax  x1—Xo

~ (Bo +B1x1) — (Bo + Bixo)

N X1 — Xo

(Bo — Bo) + (Brx1 — B1xo)
X1 — Xo

0 +61(X1 — Xo)
X1 — Xo

X1 — Xo
1
X1 — Xo

=B

=06



The linearity assumption

e The linearity assumption is less restrictive than it appears

e The following model is clearly nonlinear
y = log(yox™)

e However after some relabelling:

Bo = log("o)
B1=m
z = log(x)

e \We obtain a linear model

y = log(yox™) = log(o) + 1 log(x) = Bo + P12



Approximating non-linear models

e Supose that the true relationship between x and y is given by

y =f(x)

e \We can always abstract from non potential linearities and use a
linear model

V=Bo+Bix=f(x)=y

e |f f is not linear, then the approximation will be inexact and there
will be approximation errors

E=y—y



Approximating non-linear models

y=0.1x2—-03x+2
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Multivariate regressions

e The value of the response variable may be a function of many
regressors

e \We can still have linear models

Y =0Bo +Bix1 +LBoxo + ... + Brxk
e In this case, each coefficient 3; is still a measure of change holding
every other variable constant

Ay

A_X,'_ﬁf

e For multivariate regressions linearity assumes separability



Unobserved variables

e \We may not know or observe all the variables which affect y

y =Bo+Bix1 + Poxo + ...+ Brxx

unobserved

e \We can still approximate y with the variables that we do observe

YV =080+0ix1 = Bo+Pixi+0oxo+ ... +Bkxk =y

e As before, this approximation is inexact and has an approximation
error

eE=y—y=0xX + ...+ BiXk



Stochastic regression

e Most of the time there is uncertainty because (at least)

e \We are not certain about the linearity of a regression
e We cannot list all the relevant regressors

e Uncertainty is captured by a stochastic error term €

Yy =00 +0Bix+e

e By + Bix is called the deterministic component of the model



Stochastic regression

e Assume that the error has zero mean conditional on x

e Then the deterministic component corresponds to the mean of y
conditional on x

Elylx] = E[Bo + Bix + €|x]
= E[Bolx] + E[Bix|x] + E[e]x] = Bo + Bix

e Then slope coefficient measures the average per-unit effect of
changes in x over the average value of y conditional on x

Elylx]—Elylx] = (Bo+Bix1) — (Bo + B1x0)
=B1(x1 — x0)



Random samples

e We are usually interested in different observations coming from

e Cross-sectional — different sources
e Time series — a single source at different times
e Panel data — different time series from different sources

e We assume that the data comes from a random sample {x;, vi, €;}

X; and y; are observed but €; is not

In fact we have a collection of equations

Yi = Bo + Bixi +€;

In case of a multivariate regression

Vi = Bo + Bixii + Boxoi + ...+ BiXui + €i



Predictions and residuals

Suppose that we have estimates By and (51

The estimated model is then:

e Given an estimated model, for each realization of x; the predicted
value of y; is:

9i = Bo + Buxi
e The corresponding residual is:

& =Yi—Ji

Notice we cannot guarantee that e; = €; unless we know 3y and 5



Example: a linear regression

Errors vs. Residuals

9 =2.02 4 0.64x

Yi A T.T
Vi | i‘j’
Bo + B1x; |




Example: height and weight

Model

Contest game:

e |f you guess the weight of a participant within 10lb of the actual
weight, you get paid $2

e Otherwise you have to pay him/her $3

You could use height (observable) to estimate the weight

WEIGHT; = By + BiHEIGHT; + ¢;

Given estimated coefficients By = 103.4 and B; = 6.38
e You can make predictions

WEIGHT; = 103.4 + 6.38 HEIGHT;



Example: height and weight

Predictions - observations - residuals

HEIGHT;, WEIGHT; WEIGHT; ¢  Profit

1 5 140 135.3 4.7 2
2 9 157 160.8 -3.8 2
3 13 205 186.3 18.7 -3
4 12 198 180.0 18.0 -3
5 10 162 167.2 -5.2 2
6 11 174 173.6 0.4 2
7 8 150 154.4 -4.4 2
8 9 165 160.8 4.2 2
9 10 170 167.2 2.8 2
10 12 180 180.0 0.0 2
11 11 170 173.6 -3.6 2
12 9 162 160.8 1.2 2
13 10 165 167.2 -2.2 2
14 12 180 180.0 0.0 2
15 8 160 154.4 5.6 2
16 9 155 160.8 -5.8 2
17 10 165 167.2 -2.2 2
18 15 190 199.1 -9.1 2
19 13 185 186.3 -1.3 2

20 11 155 173.6 -18.6

1
w




Example: height and weight

Predictions - observations - residuals

WEIGHT
WEIGHT = 103.4 + 6.38HEIGHT
WEIGHT; - g

WEIGHT3

: HEIGHT
HEIGHT3
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@ Ordinary least squares



Estimating linear models

Begin from dataset coming from a random sample {x1, y;}

e \We assume that x and y are related by a model:
Yi =0Bo +Bixi + €

e \We do not observe ¢;
e \We do not know the true coefficients By and 31

Our objective now is to generate estimates Bo and By of these
coefficients to obtain an estimated model

Vi = Bo + Bixi



Example: linear regresion

Data generating process

y
10 A
o y=1+41.15x—0.05x2 + ¢
6 4
4 4
2 4
T T T T T X




Example: linear regresion

The 'best’ linear model




Example: linear regresion

The ‘closest’ linear model

10 A
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The ‘best’ linear model

Two uses for the estimated model:

e Prediction — Given x;, y; should be around y;
e Policy — Controlling x;, y; react on average according to:

Ayl = 61AXI ~ BlAXI

Policy implications only make sense if we establish causality
Better policy implications when Bl ~(;and ex0

Better predictions when y; = y;, i.e. when the residuals are small



Residual variance

e \We wish to have small residuals:

ei=Yi— 9 =yi—Bo—Bix

e Small means in magnitude not sign

e Minimize the total sum of of squared residuals:

RsS =3 2= (v-2) =3 (v o ix)’
i=1

i=1 i=1



Ordinary least squares

Given a data set, the ordinary least squares (OLS) estimates of By and

B, are the umbers By and B1 which minimize the sum of squared
residuals:

RSS = i (}/i —Bo— BIXI)Z
i=1

The OLS estimated model is:

9i = Bo + Bixi



Examples: OLS

° ~
By = 1.822
By =0.669




Computing OLS

When 31 =0

Suppose that we know that 8; =0, i.e.

Yi=0o + €

The sum of residuals is then:

RSS =) (y/ —50)2 =Y v7 =280y vi+nB;

=K —2nBoy + nB3 = K + nBo (Bo — 2)

Which is minimized when By = 7 (see next slide)

y is indeed a natural estimator given 8o = E[y]



Minimizing quadratic functions

RSS — K

RSS = K + nfo (Bo — 27)

<1+
N
<




Computing OLS

When Bp =0

e Now suppose that we know that By =0, i.e.

Yi = Bixi + €

e The sum of residuals is then:

RSS = Z (y/' —51X/)2 = Zyiz ~ 2B ZXW"+B%ZX/2
=K+ 6o (Bozx/y/ —2ZX/2)

e |n this case we obtain:

Z XiYi

B = S




The need for an intercept

e Most of the time we will be interested in B; rather than 3

e One could simply estimate

Yi =PB1Xi + &
e But if By # 0 we may get bad estimates

y y

31 = 0.308 B =1.186
w A w A A .
5170300 .o .,-'
8 4 s -.o-- .
o (
-:."-‘:
6 ,‘-5
o
4 4
2 A 2 4




Computing OLS

OLS formulas

In the general case, the OLS estimates are given by:

4 Dl =00 -7)
2o (xi —x)?
Bo =y — Bix

o Notice that 51 looks like a sample analogue of 05 * Pxy
e The OLS estimates guarantee that ) e =0



Example: height and weight

Computing OLS

Xi Yi x—% -y (x=-%X?2 (x—-X)-y)
1 5 140 -535  -20.40 28.62 157.29
2 9 157 -1.35  -12.40 1.82 16.74
3 13 205 265  35.60 7.02 94.34
4 12 198 1.65  28.60 2.72 47.19
5 10 162 -035  -7.40 0.12 2.59
6 11 174 0.65 4.60 0.42 2.99
7 8 150  -2.35  -19.40 5.52 45.59
8 9 165  -1.35  -4.40 1.82 5.94
9 10 170  -0.35  0.60 0.12 -0.21
10 12 180 1.65  10.60 2.72 17.49
11 11 170 0.65 0.60 0.42 0.39
12 9 162 -1.35  -7.40 1.82 9.99
13 10 165 -0.35  -4.40 0.12 1.54
14 12 180 1.65  10.60 2.72 17.49
15 8 160  -2.35  -9.40 5.52 22.09
16 9 155  -1.35  -14.40 1.82 19.44
17 10 165 -0.35  -4.40 0.12 1.54
18 15 190  4.65  20.60 21.62 95.79
19 13 185 265  15.60 7.02 41.34
20 11 155 0.65  -14.40 0.42 -9.36
mean 10 169  0.00 0.00 4.63 29.51
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Example: height and weight

Computing OLS

X oo a—=x)? X —x)(yi—7)
10 169 92.55 590.2

b Tl —Ri—y) _ 5902
TS (—%x)? 9255

~ 6.38

jop

=7 — B1X = 160 — 6.38 - 10 ~ 105.22

Vi =105.22 4+ 6.38x;



Example: Anscombe's quartet

Data

(a) (b) (c) (d)

/ Xi Yi Xi Yi Xi Yi Xi Yi

1 50 64 50 73 50 60 40 53
2 40 56 40 65 40 54 40 46
3 65 61 65 70 65 102 40 6.2
4 45 70 45 7.0 45 57 40 7.1
5 55 67 55 74 55 62 40 6.8
6 70 80 70 65 70 7.1 40 56
7 30 58 30 49 30 49 40 42
8 20 34 20 25 20 43 95 10.0
9 6.0 87 60 73 6.0 6.5 40 44
10 35 39 35 58 35 51 40 6.3
11 25 45 25 38 25 46 40 55
v 45 60 45 60 45 60 45 6.0
0> 28 26 28 26 28 26 28 26




Example: Anscombe's quartet

Estimated models

y y
10 4 10 1
8 - 8 -
6 - 6 -
4 Bo = 2.400 4 4 Bo = 2.400
By = 0.800 B1 = 0.800
24 2 4
T T T T T x T T T T T x
2 4 6 8 10 2 4 6 8 10
y y
10 10 A
8 - 8
6 - 6 -
4 A Bo = 2.400 4 A Bo = 2.400
B = 0.800 B1 = 0.800
24 2 4
T T T T > X T T T T > X




Multivariate regressions

The analysis extends to multivariate models

Yi = Bo + Bixii + Boxoi + ...+ Bixki + €

The interpretation is slightly different: By indicates the response to
changes in xx holding other regressors constant

OLS is defined in the same way: minimizing RSS

The formulas require linear algebra

OLS is never done by hand: we use computers



Example: financial aid

\VEIEDIES

e Response variable:

o FINAID; — grant per year to applicant /

e Regressors:

e PARENT, — feasible contributions from parents
e HSRANK; — GPA rank in high school
e GENDER; — gender dummy (1 if male and 0 if female)



Example: financial aid

Dataset

FINAID; PARENT; HSRANK; GENDER;

1 19640 0 92 0
2 8325 9147 44 1
3 12950 7063 89 0
4 700 33344 97 1
5 7000 20497 95 1
6 11325 10487 96 0
7 19165 519 98 1
8 7000 31758 70 0
9 7925 16358 49 0
10 11475 10495 80 0
11 18790 0 90 0
12 8890 18304 75 1
13 17590 2059 91 1
14 17765 0 81 0
15 14100 15602 98 0
16 18965 0 80 0
17 4500 22259 90 1
18 7950 5014 82 1
19 7000 34266 98 1
20 7275 11569 50 0
21 8000 30260 98 1
22 4290 19617 40 1
23 8175 12934 49 1
24 11350 8349 91 0
25 15325 5392 82 1




Example: financial aid

Dataset cont'd

FINAID; PARENT; HSRANK; GENDER;

26 22148 0 98 0
27 17420 3207 99 0
28 18990 0 90 0
29 11175 10894 97 0
30 14100 5010 59 0
31 7000 24718 97 1
32 7850 9715 84 1
33 0 64305 84 0
34 7000 31947 98 1
35 16100 8683 95 1
36 8000 24817 99 0
37 8500 8720 20 1
38 7575 12750 89 1
39 13750 2417 41 1
40 7000 26846 92 1
41 11200 7013 86 1
42 14450 6300 87 0
43 15265 3909 84 0
44 20470 2027 99 1
45 9550 12592 89 0
46 15970 0 57 0
47 12190 6249 84 0
48 11800 6237 81 0
49 21640 0 99 0

0

50 9200 10535 68




Example: financial aid

OLS

e Estimated OLS model (ignoring GENDER and HSRANK):

FINAID; = 15897 — 0.34 PARENT;

PARENT



Example: financial aid

OLS

e Estimated OLS model (ignoring GENDER):

FINAID, = 8927 — 0.36 PARENT, + 87.4 HSRANK;

FINAID FINAID

HSRANK 2 PARENT
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©® Analysis of variance



Evaluating an estimated model

e Is the equation supported by sound theory/common sense?
e How well does the estimated model fit the data?

e |s the dataset reasonably large and accurate?

e |s OLS the best estimator to be used?

e Do estimated coefficients correspond to prior expectations?

e Are all the important variables included?

e |n case we want to do policy: are the estimated parameters
structural?



Explained variation

Regressions are used to explain y

In particular, we wish to explain why/when is y; different from p,

The variation in y can be decomposed as:

Vi — by =Bo + B1x; + € — Bo — Bilx
=01(x — k) + &
Ny

explained unexplained

One way to evaluate models is to measure the proportion of the
variance of y that we are able to explain



Explained variation

Regressions are used to explain y

In particular, we wish to explain why/when is y; different from y

The variation in y can be decomposed as:
Vi = =Bo + Bixi + & — Bo — B1X
=Bi(x —x)+ &
N——— ~~

explained unexplained

One way to evaluate estimated models is to measure the proportion
of the variance of y that we are able to explain



Example: Variance decomposition

<

v —




Variance decomposition

TSS=> (=9’ =) i+e—7y)
0
=S G- -2 e+ Y&

= Gi-9P+ > e
_— =~

explained unexplained
Total sum Explained sum Residual sum
of squares = of squares + of squares

(TSS) (ESS) (RSS)



Goodness of fit (R?)

We have decomposed the total variation (TSS) into the explained
variation (ESS) and the unexplained or residual variation (RSS)

A measure of the explanatory power of the model is the proportion
of explained variation

ESS TSS—RSS . RSS > e?

R? = = =1- =1-
TSS TSS TSS Y (vi—7)?

The higher the R? the closer the model is to the data
Since 0 < RSS < TSS we know that

0<R?<1




Interpreting the R?

e The R? coefficient measures:

How much of the variation of y can be explained by
the variation of x according to the estimated model

e |t does NOT measure:

e How linear/tight the relation between x ad y is (correlation)
e The inclination of the estimated line (slope coefficient)
e The strength of the causal relation between x and y



Examples: R?

y y
10 10 7
8 8 -
6 6 R2 = 1.000
4 4 A
2 5
T T T T T X
2 4 6 8 10
y y
10 10
8 8
R2 = 0.1185
6 - 6
4 T -t - e, 4
P N
2 2




Example: height and weight

Computing OLS

1 5 140 135.3 -29.40 864.36
2 9 157 160.8 -12.40 153.76
3 13 205 186.3 35.60 1267.36
4 12 198 179.9 28.60 817.96
5 10 162 167.2 -7.40 54.76
6 11 174 179.9 4.60 21.16
7 8 150 173.6 -19.40 376.36
8 9 165 160.8 -4.40 19.36
9 10 170 167.2 0.60 0.36
10 12 180 179.9 10.60 112.36
11 11 170 173.7 0.60 0.36
12 9 162 160.8 -7.40 54.76
13 10 165 167.2 -4.40 19.36
14 12 180 179.9 10.60 112.36
15 8 160 154.4 -9.40 88.36
16 9 155 160.8 -14.40 207.36
17 10 165 167.2 -4.40 19.36
18 15 190 199.1 20.60 424.36
19 13 185 186.3 15.60 243.36
20 11 155 173.6 -14.40 207.36

mean 10 169 170.70 0.00 253.24
sum 207 3388  3413.90 0.00 5064.80

R? =1 —1301.8/5064.80 ~ 0.743

12.96
1.44
4.84

0

31.36

33.64
4.84

82.81
1.69

345.96

65.09
1301.8




Adding more regressors

e \What would happen to our model if we add a new regressor x»?
e Recall that OLS minimizes RSS:
~ ~ ~ 2
RSS =) (y, —Bo — Prx1i — ﬁzxzi)

e Adding a new regressor adds a degree of freedom (we can always
set B> = 0) and hence always decreases RSS

e This implies that adding a regressor always decreases the R?
coefficient even if y is almost independent from it!



R? — Adjusted R?

e Having more data or more variables improves the R? because it
increases the degrees of freedom

e The adjusted R? controls for this bias:

R2_1_ e /(h—k-1)
2i—=y)2/(n—-1)

where:

e n — number of observations (sample size)
e k — number of regressors

e R2=R? when k =1 and R? ~ R? when n is very large



ANOVA

Number of obs = 32 R-squared = 0.9214
Root MSE = .877971 Adj R-squared = 0.8985
Source | Partial SS df MS F Prob > F
___________ e
Model | 217.00 7 31.00 40.22 0.0000
|
x1 | 3.125 1 3.125 4.05 0.0554
x2 | 194.50 3 64.8333333 84.11 0.0000
x3 | 19.375 3 6.45833333 8.38 0.0006
|
Residual | 18.50 24 .770833333
,,,,,,,,,,, A o e
Total | 235.50 31 7.59677419



Example: water supply

\VEIEDIES

e Response variable:

¢ WATER; — water consumed in period /

e Regressors:

e PRICE; — price of water in period /
e POP; — population in period /
e RAIN; — rainfall during period /

WATER; = 24000 + 0.62POP — 400RAIN R? = 0.847

WATER; = 24000 + 48000PRICE + 0.4POP — 370RAIN R? = 0.859
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