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@ Classical assumptions



Classical assumptions

@ Correct specification Vi = Bo + Bix; + €; *
® Unbiased errors E[e]=0 -
© Orthogonality E[xeg]=0 * ok ok
@ No serial correlation Eleigj] =0 * K %
© Homoskedasticity Vel =V]ej] ok
® No multicollinearity E[x?] #0 ¥ %
@ Normality gi ~ N(0,07?) *



Example: all the assumptions hold

Data generating process

{x;, &} are i.i.d.

e Xx; is distributed uniformly on (0, 15)
e ¢; is distributed N(0,0.75)

e Xx; and g; are independent

e y; is given by:

yi=2+0.5x + ¢



Example: all the assumptions hold

Data generating process
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Example: all the assumptions hold

Realized sample with n = 100
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Example: all the assumptions hold

Estimated model (n = 100)

10 A -
yi = 1.79 + 0.52x; P

8 R? =0.89




Example: all the assumptions hold

Residuals vs. predictions (n = 100)
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Residual histogram (n = 100)

Pr(e =¢)



Example: all the assumptions hold

Realized sample with n = 500




Estimated model (n = 500)

9 = 1.94 4 0.51x;
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Example: all the assumptions hold
Residuals vs. predictions (n = 500)




Residual histogram (n = 100)

Pr(e =¢)



Correct specification

Correct specification

We assume that y; has a linear relationship with x;:

Yi =Bo +Bixi + €

e |f this is not true we can still run OLS and interpret the coefficients

e However, the interpretation is less appealing

e \We can often adjust by making variable transformations



Example: incorrect specification

Data generating process

10M y/:871.5X,+0.1X/2+5/ /
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Example: incorrect specification

Realized sample
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Example: incorrect specification

Estimated model
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Example: incorrect specification

Residuals vs. regressors
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Example: incorrect specification 2

Data generating process

| , yi=2+T7log (x;) + &




Example: incorrect specification 2

Realized sample
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Example: incorrect specification 2

Estimated model

2/ - y; = 4.10 + 0.49x;
> R2=0.71
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Example: incorrect specification 2

Residuals vs. predictions
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Example: incorrect specification 2

Realized sample
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Example: incorrect specification 2

Change of variable
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Example: incorrect specification 2

Estimated model

- yi = 1.83+4 7.25log(x;)
R2=0.84

\ log(x)
12



Example: incorrect specification 2

Estimated model

yi = 1.83+4 7.25log(x;)
R2=0.84
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Unbiased errors

Unbiased errors

We assume that the error term has zero mean:

E[ei]=0

e This is a nominal assumption if we do not care about B

e \We can still estimate (51 as long as we include an intercept in our
regression

e Simply relabel By = Bo + e and € = &; — pe
¥i = Bo + Bixi + €
= (,30 + ,u5> + Bixi + <Ei - Ms)
=Bo +Brxi + €

Ele/] =Ele; — pe] = tte — e =0
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Example: based errors

Data generating process

ej ~ N(3.5,0.75) -
¥i =0+ 0.5x +¢; ~

14
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Example: based errors

Realized sample
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Example: biased errors

Estimated model




Orthogonality

Orthogonality

We assume that the regressors are uncorrelated with the error term

E[X/gj] =0

e X; is exogenous if this holds, and otherwise endogenous

e Endogeneity is commonly caused by omission of important variables

When a regressor is endogenous, OLS may attribute to x variation
that is actually due to €

e This may result in bad estimates both for By and for 3;



Example: correlation between x and €

Data generating process

ej ~ N(—0.6x;,1)
Yi=6+03x +¢;

10 +

8\,

6 ™~
-




Example: correlation between x and €

Realized sample
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Example: correlation between x and €

Estimated model

9 =6.04— 0.31x
81~—~ _ R?=0.63
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No serial correlation

No serial correlation

We assume that the data comes from a random sample, in particular:

Elegiei]=0

e This may be a bad assumption for time series

e The realization of the error in one period may depend on the
realization in the past period

e This makes the interpretation of OLS estimates problematic



Homoskedaticity

Homoskedaticity

We assume that the error term has constant variance:

Vel =V]g]=o0:

(Homo = equal) + (skedasticity = variance)
Otherwise we say that we have heteroskedasticity

e |t is not important for estimation

We don't use/need any assumptions to compute OLS or interpret
the coefficients

e |t is important for inference but is easily fixed using robust variance
estimators



Example: Heteroskedasticity

Data generating process
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Example: Heteroskedasticity

Realized sample
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Example: correlation between x and €

Estimated model

10 A N
y; = 1.00 — 0.49x; o7

8 R?2 =0.87




Multicolinearity

No multicolinearity

We assume that the regressors have positive variance:

E[xﬂ >0

e To measure the impact of changes in x on y, x has to change
e OLS divides by the variance of x, it can't be done if it is exactly 0

Problems may arise with imperfect colinearity: when V[x] is small

The estimation and numerical errors may generate inaccurate estimates!!



Example: multicolinearity

Data generating process

10 A ¥i =2+ 0.5x +¢; ~
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Example: all the assumptions hold

Realized sample
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Example: all the assumptions hold

Estimated model

- _ _ 9 =6.99 —0.01x;

8 A R2 = 0.00 fee T T T ==




Normality

Normality

The error terms are normally distributed:

Ej~ N(O, O's)

e This assumption allows to determine the (finite sample)
distribution of the estimators By and G

e |t is important for inference but not for estimation

e |t can be replaced with the assumption of having a large sample
(asymptotic distribution)



@® OLS properties



Sampling distribution

e Assume that the classical assumptions 1-7 hold
e What can we say about the OLS estimates?

e Are they good estimates of the true data generating process?

e Are they unbiased?
e Are they efficient?
e Are they consistent?

e Can we use the OLS estimates to make inference?

e To answer these questions we need to understand their sampling
distribution



Example: sampling distribution

Data generating process
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Example: sampling distribution

Four samples with n = 10

By =2.016

B =0.736

By = 0.945
B1 = 0.803

Bo = 3.520

By = 0.401

By = 2.956
By =0.532




Example: sampling distribution

Four samples with n = 25

Bo = 1.392
s B =0665 o
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Example: sampling distribution

Four samples with n = 100

Bo =2.132
B =0625 =

Bo = 1.755
B1 = 0.600

\

Bo =1.918 PN
B1 =0.619
H




Example: sampling distribution

Four samples with n = 500




Example: A strange random variable

Sampling distribution of Bg

Prifo = b) Pr(fo = b) Prifo = b)
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Pr(f = b)

0.50 -

0.25 4

n=10

Sampling distribution of B;

Example: A strange random variable

Pr(By = b) Pr(B1 = b)
0.50 n=25 0.50 n=100
0.25 - 0.25 -
T T b T T T b
-0.6 0.6 1.2 -0.6 0.6 1.2
n=25 n =100




Theorem
The OLS estimates are unbiased:

E[B] =8 E[B] =58

e \We can write:
Oxy
0%

Bo = py — Bipx B =
o The OLS estimates are the corresponding sample analogues:
D Y O 7))
Bo=y—Pix L= CEEIE

e Sample averages are unbaiased (and consistent) estimators of means



Unbiasedness of 5;

e Notice that:
V=0B0o+0BXx+¢
Yi—YZﬁl(X/ _)?)‘Fe/ — &
e Substituting in the formula for Bi:

6, - s~ D —)

S (x — x)2
B D% — >_<)<51(Xf —X)+¢€ — E)
B > (x — X)?
_g o 2xi=X)E -8 g 2= Xe
BRI s s R 5

e Taking expectation:

E[f] =6 +E [ %XX’/ _XX);’ } =6



Variance of 3;

e Under the classical assumptions, the variance of the OLS slope
estimator is:

e Notice two interesting things:

e Increasing the variance of x increases efficiency
e Increasing variance of € (noise) decreases efficiency

Theorem

Under the classical assumptions, the OLS estimator is the most
efficient unbaiased linear estimator (BLUE).



Estimating the variance of (3

e Our formula for V [3; | requires 02 and o2

e When they are unknown they can be estimated from our data:
A2 1 -\2
62= 23 -%)

1 1
6i=—7) & =-—"7RSS

e | ikewise, we can estimate the variance of 31

~__Rss
2206 —x)?

1
9%, =,



Some additional considerations

e The LLN implies that By and B are consistent

e The CLT implies that the distribution of By and B is approximately
normal for large samples

e We often do inference assuming that:

N 1 RSS
RUCHR =

e Without homoskedasticity, we need to adjust our estimation of

V(5]

e Some of the classical assumptions are sufficient but not necessary



© Inference



Inference

Inference refers to deriving information from the data
In statistics, inference takes the form of hypothesis testing

Today we will focus on significance testing

We wish to determine whether the data conclusively suggests that
x has a positive (negative) effect on y

We will also establish confidence sets for our estimates and our
predictions



e Suppose that we obtain a positive OLS slope coefficient 1 > 0
e This does not guarantee that there is a positive relation, i.e. B; > 0

e Another possibility is that 3; = 0 and the positive estimate comes
from samling error

° We say that 61 is significant if the data decisively suggests that
1 #0

e Formally, want to test hypothesis of the form

I B1#0 VS. 4. B1=0



Example: significance

Realized samples
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Example: significance

Estimated models




Example: significance

True models




Example: significance

Large samples
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t—statistic

Suppose that we want to test for:

M. B #0 vs. S B =

Recall that approximately 81 ~ /V(ﬁl' Aél)

Therefore, under the null hypothesis:

6
SE(B1)

e \We can use this statistic to test our hypothesis

N(O, 1)

If t is far away from 0, then 77, is likely to be false

Rule of thumb: 2 standard deviations ~ 96% significance



Significance

Jo: BL=0 vs. JA: Bi#0

A
SE(61)

e Under % the asymptotic distribution of t is N(0, 1)

e A test of significance a is to reject 74 if:

[t > tY =71 ((1 —a)/2)

US)

(1-a)/2 (1-a)/2

v v



Example: significance

True models

10

t=226.4
SE(B7) = 0.004

t=—1.44
SE(B7) = 0.056

t=-117
SE(B1) = 0.094

t=2.10
SE(B;) =0.13
T T
8 10




One sided hypothesis

Iy B < b vs. JA: Bi>b

£ — Br—b
SE(B1)

e Under % the asymptotic distribution of t is N(0, 1)
e A test of significance a is to reject 74 if:

t>tY =0 (a)

US)

v



Regression output

e Most linear regression software will report:

e Estimate (1

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

e Most linear regression software will report:

e Estimate (1
e Standard error for the estimate SE(G:)

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

e Most linear regression software will report:

e Estimate (1
e Standard error for the estimate SE(G:)
e t-statistic value t

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

e Most linear regression software will report:

e Estimate (1

e Standard error for the estimate SE(G:)
e t-statistic value t

e p-value

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

e Most linear regression software will report:

Estimate (1
Standard error for the estimate SE(B1)
e t-statistic value t

p-value
Confidence interval 81 + 1.96SE((31)

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

e Most linear regression software will report:

e Estimate (1

e Standard error for the estimate SE(G:)
e t-statistic value t

e p-value

e Confidence interval 51 + 1.96SE(B;)

e Normal and adjusted R?

Observations

e t-tests do not test validity
e t-tests do not test importance
e Confidence is not probability



Regression output

y | Coef Std. Err t P>|t]| [95% Conf. Intervall
_______ o el
x1l | -2.681508 1.393991 -1.92  0.055 -5.424424 .0614073
x2 | -3.702419 .1540256 -24.04 0.000 -4.005491 -3.399348
x3 | .1086104 .090719 1.20 0.232 -.0698947 .2871154
cons | 906.7392 28.26505 32.08 0.000 851.1228 962.3555
y= 906 —2.68 xi —3.70 x» +0.109 x3
(28.27) (1.39) (0.15) (0.09)




Prediction intervals

For predictive purposes we can still generate confidence intervals
arround y;

A naive way to do so is to use just the residual variance:

vi € (i — K-RSS, §i + K - RSS)

This yields the confidence bands in previous figures

This would be accurate only if By = B and B1 = B1
One needs to adjust form the variance of the estimators
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