
Expected Utility∗

Bruno Salcedo†

Winter 2020

Economic agents often lack information relevant for their choices. These notes

present some of the most common models of decision making under uncertainty.

The focus is on the standard model of objective expected utility, but some impor-

tant departures are briefly discussed.

1. The Origin of the Expected Utility Hypothesis

The origin of the theory of probability is often attributed to a series of works

from the XVIIth century. One of the central questions addressed by these works is

how to assign fair prices or values to games of chance. The prevailing approach at

the time was to use what we now call expected value, multiplying each possible gain

or loss by its probability and adding up the products (Mǎıstrov, 1974). Nicolaus

Bernoulli found that such an approach could lead to paradoxical conclusions. As

a thought experiment, he devised a hypothetical game with an infinite expected

value, such that most people would only pay a small amount to play. The thought

experiment is now called the St. Petesburg Paradox and it is described by Nicolaus

Bernoulli’s cousin—Daniel Bernoulli—as follows1
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Peter tosses a coin and continues to do so until it should land

“heads” when it comes to the ground. He agrees to give Paul one

ducat if he gets “heads” on the very first throw, two ducats if he gets

it on the second, four if on the third, eight if on the fourth, and so

on, so that with each additional throw the number of ducats he must

pay is doubled. Suppose we seek to determine the value of Paul’s

expectation. . .

Although the standard calculation shows that the value of Paul’s

expectation is infinitely great, it has. . . to be admitted that any fairly

reasonable man would sell his chance, with great pleasures, for twenty

ducats. (Bernoulli (1738), p. 31)

Gabriel Cramer and Daniel Bernoulli independently came up with very similar

solutions to the paradox. Instead of using the expectation of gains and losses, they

proposed to use the expectation of a utility function defined over wealth. In a 1728

letter to Nicolaus Bernoulli, Cramer writes:

[T]he discrepancy between the mathematical calculation and the

vulgar evaluation. . . results from the fact that, in their theory, mathe-

maticians evaluate money in proportion to its quantity while, in prac-

tice, people with common sense evaluate money in proportion to the

utility they can obtain from it.

In turn, Bernoulli (1738) argued that:

The concept of value. . . may be defined in a way that renders the

entire procedure universally acceptable without reservation. To do

this, the determination of the value of an item must not be based on

its [prize],2 but rather on the utility it yields. The [prize] of the item is

dependent only on the thing itself and is equal for everyone; the utility,

however, is dependent on the particular circumstances of the person

making the estimate. There is no doubt that a gain of one thousand

ducats is more significant to the pauper than to a rich man though

both gain the same amount.

2The original work in Latin uses the word “pretium”, which can mean both price or prize.
The quote from a translation to English by Dr. Louise Sommer which translates “pretium” as
“price”. I believe that “prize” fits the context better, but I am not an expert in Latin.
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. . . [L]et us use this as a fundamental rule: if the utility of each

possible profit expectation is multiplied by the number of ways in which

it can occur, and we then divide the sum of these products by the total

number of possible cases, a mean utility will be obtained, and the profit

which corresponds to this utility will equal the value of the risk in

question. (pp. 24)

Both Cramer and Bernoulli had a sense that the utility function should exhibit

decreasing marginal utility. In his letter, Cramer considered two examples: a

function that becomes constant for sufficiently high levels of wealth, and
√ · .

Bernoulli (1738) in part argued that

[T]he utility resulting from a small increase in wealth will be inversely

proportionate to the quantity of goods previously possessed. (p. 25)

This is the description of logarithmic utility functions. Either of the proposed

utility functions would give Paul a finite expected utility. For more on the early

history of the expected utility hypothesis, other resolutions, and interesting as-

pects of the paradox see Dutka (1988) or Seidl (2013).

2. Objective Expected Utility Theory

Consider a decision maker choosing between lotteries. Each lottery induces a

probability distribution over a set of outcomes. The probabilities are objective

and known to the decision maker. The expected utility hypothesis asserts that

the decision maker behaves as if maximizing the expectation of a utility function

defined over the set of outcomes.

This section presents a behavioral characterization of the expected utility hy-

pothesis due to von Neumann and Morgenstern (1944). If you are looking for fur-

ther reading material, Chapter 8 in Gilboa (2009) has an an interesting overview

and philosophical discussion of the von Neumann-Morgenstern conditions. And

Chapter 5 in Kreps (1988) discusses some important mathematical details and

generalizations.
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2.1. A Representation Theorem for Expected Utility

Fix a finite set of outcomes X = {x1, . . . , xn}.3 A lottery is a probability

measure over X. Since X is finite, each lottery can be represented by a vector

of probabilities p = (p1, . . . , pn) ∈ [0, 1]n with
∑n

i=1 pi = 1, The set of lotteries

is denoted by ∆X. It is a compact and convex subset of Rn. When n = 3, it

can be represented graphically by a triangle. Each vertex of the triangle repre-

sents a degenerate probability that assigns full probability to one of t in he three

outcomes.

Suppose that we observe a preference relation < over simple lotteries. Let

≻ and ∼ denote strict preference and indifference, defined in the usual way. A

function U : ∆X → R is said to represent < if for every pair of lotteries p and q

p < q ⇔ U(p) ≥ U(q). (1)

And it is called an expected utility function if there exists some u : X → R such

that for all p ∈ ∆X

U(p) =
∑

x∈X

p(x)u(x). (2)

In that case, the function u is called the corresponding Bernoulli utility function.

We are interested in whether < can be represented by an expected utility

function. From the theory of choice under certainty, we know that a preference

relation admits a continuous utility representation if and only if it is complete,

transitive, and continuous. Hence, these are also necessary conditions for an

expected utility representation. von Neumann and Morgenstern (1944) found a

third condition called the Independence Axiom.

Axiom 2.1 (Rationality) < is complete and transitive.

Axiom 2.2 (Continuity) {p ∈ ∆X | p≻q} and {p ∈ ∆X | q≻p} are open for all

q ∈ ∆X.

3Assuming that X is finite greatly simplifies the exposition. The results in this section
can also be generalized to cover lotteries with finite support even if X is not finite, and even
to general Borel probability measures over Euclidean spaces by imposing additional continuity
assumptions. See for instance Kreps (1988) pp. 57–68.
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Axiom 2.3 (Independence) For all lotteries p, q, r ∈ ∆X and all µ ∈ (0, 1),

p < q ⇔ µp + (1 − µ)r < µq + (1 − µ)r.

The Independence Axiom has an important and interesting normative inter-

pretation in terms of consequentialism and dynamic consistency. See for instance

Gilboa (2009) pp. 82. However, I would like to emphasize a geometric interpreta-

tion instead. Expected utility functions are linear in probabilities. Hence, we need

an axiom that imposes linearity. The following proposition can be interpreted as

saying that the Independence Axiom implies that indifference curves are parallel

lines. See the figure. The proof is left as an exercise for the problem set.

Proposition 2.1 If < satisfies the Independence Axiom, then for all p, q ∈ ∆X

and r ∈ R
nsuch that p + r, q + r ∈ ∆X,

p < q ⇔ (p + r) < (q + r) (3)

Rationality, continuity, and the independence axiom are both sufficient and

necessary for the existence of an expected utility representation. The proof of the

theorem is deferred to the next subsection.

Theorem 2.2 (von Neumann and Morgenstern (1944)) A preference relation < over

∆X admits an expected utility representation if and only if it satisfies axioms

2.1–2.3.

Utility functions are unique up to monotone transformations, but not all utility

functions are linear. Within the class of linear utility functions there is some

cardinal information.

Proposition 2.3 Suppose that U us an expected utility representation of <. A

function V : ∆X → R is also an expected utility representation of < if and only

if there exist a > 0 and b ∈ R such that V (p) = aU(p) + b for all p ∈ ∆X.
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2.2. Omitted Proofs

Establishing necessity of the axioms for the existence of an expected utility

representation is straightforward. Hence, I will only prove sufficiency. I will do so

by proving a series of lemmas using arguments from Herstein and Milnor (1953).

In particular, note that sufficiency follows directly from lemmas 2.6 and 2.7 below.

Lemma 2.4 If < is complete and satisfies the Independence Axiom, then for all

lotteries p, q ∈ P such that p ≻ q and all λ ∈ [0, 1], µp + (1 − µ)q < λp + (1 − λ)q

if and only if µ ≥ λ.

Proof. If µ = λ, then the conclusion of the lemma follows from completeness. Now,

suppose that µ > λ. I will show that, in that case, µp + (1 − µ)q ≻ λp + (1 − λ)q.

There are three cases to consider. (Case 1) If µ = 1, then

µp + (1 − µ)q = p = λp + (1 − λ)p ≻ λp + (1 − λ)q, (4)

where the strict preference follows from p ≻ q and the Independence axiom. (Case

2) If λ = 0, then

µp + (1 − µ)q ≻ µq + (1 − µ)q = q = λp + (1 − λ)q. (5)

(Case 3) Finally, suppose that 1 > λ > µ > 0. Let η = µ/λ and r = ηp + (1 − η)q.

Since η ∈ (0, 1), the Independence Axiom implies that p = ηp + (1 − η)p ≻ r.

Using the Independence Axiom again it follows that λp + (1 −λ)q ≻ λr + (1 −λ)q.

Finally,

λr + (1 − λ)q = λ ·
(

µ

λ
p +

(

1 − µ

λ

)

q
)

+ (1 − λ)q = µp + (1 − µ)q. (6)

Therefore, λp + (1 − λ)q ≻ µp + (1 − µ)q.

A completely analogous argument can be used to show that if µ 6≥ λ then

µp + (1 − µ)q 6< λp + (1 − λ)q, thus completing the proof of the lemma. �

Lemma 2.5 If < satisfies axioms 2.1–2.3, then for all p, q, r ∈ P such that p <

q < r and p ≻ r, there exists a unique µ∗
pr(q) ∈ [0, 1] such that r ∼ µ∗

pr(q)p + (1 −
µ∗

pr(q))r.
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Proof. Consider the sets Λ+ = {λ ∈ [0, 1] | r < λp + (1 − λ)q} and Λ− = {λ ∈
[0, 1] | λp + (1 − λ)q < r}. Since < is complete, Λ+ ∪ Λ− = [0, 1]. Since < is

continuous, Λ+ and Λ− are closed. Since [0, 1] is connected, this implies that

Λ+ ∩ Λ− 6= ∅. That is, there exists some λ ∈ (0, 1) such that r ∼ λp + (1 − λ)q.

Uniqueness follows from Lemma 2.4. �

As an intermediate step in order to establish the existence of an expected

utility representation, I will establish the existence of a linear utility representation

according to the following definition. A utility function U : ∆X → R is said to

be linear with respect to mixtures if and only if

U
(

µp + (1 − µ)q
)

= µU(p) + (1 − µ)U(q), (7)

for all lotteries p, q ∈ ∆X and all µ ∈ [0, 1].

Lemma 2.6 If < satisfies axioms 2.1–2.3, then it admits a utility representation

which is linear with respect to mixtures.

Proof. Since < is complete, transitive, and continuous, it admits a continuous

utility representation. Since ∆X is compact, Weierstrass’ Extreme-Value Theo-

rem implies that there exist lotteries p0, p1 ∈ ∆X such that p1 < p < p0 for all

p ∈ ∆X.4 If p0 ∼ p1, then the agent is indifferent between all lotteries and any

constant utility function works. Otherwise, we can set U(p) = µ∗
p0p1

(p), where

µ∗
p0p1

(p) is the weight from Lemma 2.5. Lemma 2.4 implies that U represents <.

Hence, it only remains to verify linearity. Note that for all pq ∈ ∆X and µ ∈ [0, 1],

µp + (1 − µ)q ∼ µ
[

U(p)p1 + (1 − U(p))p0

]

+ (q − µ)q

∼ µ
[

U(p)p1 + (1 − U(p))p0

]

+ (1 − µ)
[

U(q)p1 + (1 − U(q))p0

]

=
[

µU(p) + (1 − µ)U(q)
]

p1 +
(

1 −
[

µU(p) + (1 − µ)U(q)
])

p0,

where the first two indifference comparisons follow from the Independence Axiom

and the definition of U , and the equality follows from simple algebra. From the

4The proofs in both von Neumann and Morgenstern (1944) and Herstein and Milnor (1953)
requires additional lemmas, because neither of them assumes X to be finite. Hence, they cannot
guarantee the existence of a best and worst lotteries. In fact, they consider not just probability
spaces, but general algebraic structures called mixture spaces.
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uniqueness of µ∗
p0p1

(µp + (1 − µ)q) it follows that

U
(

µp + (1 − µ)q
)

= µU(p) + (1 − µ)U(q). �

The final step to prove Theorem 2.2 is to establish the following lemma. The

proof of the lemma is left as an exercise for the problem set.

Lemma 2.7 A function U is linear with respect to mixtures if and only if it is an

expected utility function.

Proof of Proposition 2.3. The if part of the proof is straightforward. Hence, I

will only prove the only if part. Suppose that both U and V are expected utility

representations of <. Let p0 and p1 be the best and worst lotteries, as in the

proof of Lemma 2.6. If p1 ∼ p0, then both U and V are constant, and the result

is trivial. Hence, suppose for the rest of the proof that p1 ≻ p0.

Fix any lottery p ∈ ∆X. Let µ be the weight from Lemma 2.5 such that

p ∼ µp1 + (1 − µ)p0. Since U is a linear representation of < (Lemma 2.7), it

follows that

U(p) = U(µp1 + (1 − µ)p0) = µU(p!) + (1 − µ)U(p0). (8)

After some simple algebra it follows that

µ =
U(p) − U(p0)

U(p1) − U(p0)
. (9)

Since the same holds for V , it follows that

U(p) − U(p0)

U(p1) − U(p0)
=

V (p) − V (p0)

V (p1) − V (p0)
, (10)

which implies that V (p) = aU(p) + b where

a =
V (p1) − V (p0)

U(p1) − U(p0)
and b = V (p0) −

(

V (p1) − V (p0)

U(p1) − U(p0)

)

U(p0). (11)

Since p1 ≻ p0, it follows that a > 0. Since a and b do not depend on p, the proof

is complete. �
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3. Subjective Beliefs

The objective expected utility model assumes the existence of objective prob-

abilities, and assumes that individuals know them. However, there are settings

were the meaning of the word “probability” is not entirely clear. For instance,

ask yourself what does it mean when a news outlet makes a sentence of the sort

“the polls give candidate X a chance of x% of wining the election.” Even if we

could define probabilities, economic agents might not know how to assign prob-

abilities to all relevant events. Even when they do, there is no guarantee that

different individuals will assign the same probabilities to the same events. For

example, some individuals might believe that all the outcomes of a roulette wheel

are equally likely, while others might be convinced that the roulette is rigged in

favor favor the house, and perhaps some believe that red spaces are “hot” at the

moment and are more likely to land.

One common approach is to abandon the notion of objective probabilities.

Instead, we can assume that people have an intuitive notion of ‘likelihood’ in

their minds. Then, we can think of probabilities as a subjective measure of this

likelihood. In order to distinguish objective and subjective probabilities, I will

call the later ones beliefs. The subjective expected utility hypothesis is that agents

behave as if maximizing the expectation of a utility function with respect to a

subjective belief. Savage (1954) proposed a framework that allows to define beliefs

and infer them from the agents’ preferences over uncertain prospects

In Savage’s setting, an economic agent choosing acts a ∈ A. She cares about

potential outcomes z ∈ Z, and she is uncertain about the true state of the world

x0 ∈ X. The outcomes depend both on the act chosen by the agent and the

true state of the world. To capture this idea, Savage defined acts as functions

a : X → Z mapping states into consequences. In this way, a(x) would be the

consequence of act a if the true state was x0 = x.

Suppose that the researcher observes the agents preferences < over acts. The

subjective expected utility hypothesis is that the agent behaves as if there existed

a utility function over consequences u : Z → R and a probability function p ∈ ∆X

such that

a < b ⇐⇒
∫

X

u(a(x)) dp(x) ≥
∫

X

u(b(x)) dp(x),

for all pairs of acts a, b, ∈ A. In that case we call p the (subjective) beliefs of the
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agent about the state, and we say that (u, p) represent the agent’s preferences.

Savage proposed with a list of axioms or postulates on preferences over acts.

His postulates characterize the empirical content of the subjective expected utility

hypothesis. Moreover, they allow the researcher to recover a unique belief from

an idealized choice data. The introduction to Savage (1954) is an excellent read,

but the axioms can be better understood from Kreps (1988) or Gilboa (2009).

The key step in Savage’s work is to establish what he calls the sure-thing

principle, which he describes as follows.

A businessman contemplates buying a certain piece of property. He

considers the outcome of the next presidential election relevant. So, to

clarify the matter to himself, he asks whether he would buy if he knew

that the Democratic candidate were going to win, and decides that he

would. Similarly, he considers whether he would buy if he knew that

the Republican candidate were going to win, and again finds that he

would. Seeing that he would buy in either event, he decides that he

should buy, even though he does not know which event obtains, or will

obtain, as we would ordinarily say. (Savage (1954), p. 21)

More generally, suppose that an individual would prefer a to be b if they

learned that event A is true. Further suppose that the individual would also

prefer a to be b if they learned that event A is false. Then, the individual should

also prefer a to b before learning whether A is true or false. To most people, this

sounds like a natural conclusion. Consider for instance the following quote.

Except possibly for the assumption of simple ordering, I know of no

other extralogical principle governing decisions that finds such ready

acceptance. (Savage (1954), p. 21)

Two of Savage’s postulates are sufficient to derive the sure thing-principle. The

first one is that the agent’s preferences over acts should be rational.

Axiom 3.1 < is complete and transitive

In order to state the second postulate, we need some aditiona notation. Given
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acts f and g and an event Y ⊆ X, let fY g denote the act given by

[fY g](x) =







f(x) if x ∈ Y

g(x) if x 6∈ Y

Axiom 3.2 For all acts f, g, h, k and all events Y ⊆ X, fY h ≻ gY h if and only if

fY k ≻ gY k

Postulate 3.2 allows us to define preferences conditional on an event Y . Say

that f ≻Y g if there exists an act h such that fY h ≻ gY h. Now, we are in position

to formally state and prove the sure-thing principle.

Proposition 3.1 (Sure-thing principle) Under postulates 3.1 and 3.2, given any acts

f and g, and any event Y , if f ≻Y g and f ≻X\Y g, then f ≻ g.

Proof. Let f , g, and Y satisfy f ≻Y g and f ≻X\Y g. The definition of ≻A implies

that fY h ≻ gY h for some act h. Postulate 3.2 thus implies that f = fY f ≻ gY f .

By an analogous argument, fX\Y g ≻ gX\Y g = g. Note that gY f = fX\Y g. Hence,

f ≻ gY f ≻ g, and the result follows from the transitivity of ≻ (Postulate 3.1). �

4. Other Forms of Choice Under Uncertainty
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