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Abstract We provide an efficient way to implement the Abreu-
Pearce-Stacchetti algorithm to approximate the set of SPNE payoffs
for repeated games with perfect monitoring and public randomization.
The algorithm generates a decreasing sequence of sets that converge
to the set of equilibrium payoffs. Each iteration is obtained by ap-
plying a set operator to the previous iteration. We use the fact that
the operator maps polyotopes to polytopes to provide an efficient way
to compute it that drastically reduces the computation time required.
We also show that the set of equilibrium payoffs is a polytope, this
suggests that the number of vertices of the sequence of iterations will
remain bounded.

Keywords Generalized dynamic programming · APS · Repeated
games · Computational game theory

JEL classification C61 · C73 · D70

In repeated interactions, agents can implement large sets of outcomes by coordinat-
ing their choices on public information on the history of play. Economic theory has thus
found a great interest in repeated games. However, the lack of closed form solution for
the set of equilibria makes numerical approximations necessary. Current algorithms are
based on Abreu et al. (1990), hereon APS, which introduces a set operator B describ-
ing the set of payoffs that could be obtained in equilibrium, given a set of equilibrium

∗We wish to gratefully acknowledge the comments, advise and supervision of Ed Green, Vijay
Krishna, Paul Grieco and Nail Kashaev. This is a preliminary and incomplete version that was being
prepared to be submitted for publication in the format of a short note or letter. It will no longer
be submitted in view of the work of Abreu and Sannikov (2013) which anticipates our algorithm and
results.
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continuation values. APS shows that iteratively applying B to any compact set which
is large enough, generates a decreasing sequence of approximations that converge to the
set of equilibrium payoffs. Equilibrium strategies can be derived form this set.

Implementing the APS algorithm numerically is not straightforward, partly because
it is difficult to represent generic infinite sets in a computer. Introducing public random-
ization helps because all the relevant sets become convex (Cronshaw and Luenberger,
1994), but the representing or approximating convex sets can be non-trivial. Different
papers use different kind of approximations, for instance, ? uses trigonometric ap-
proximations, while Cronshaw (1997) and Judd et al. (2003) (hereon JYC) use convex
polytope approximations. In a related setting, Sannikov (2007) considers games in con-
tinuous time with particular monitoring structures, and solves a differential equation
to compute the boundary of the equilibrium set.

We show that B maps polytopes to polytopes, and thus can be computed with a fast
direct algorithm. This drastically reduces the computation time needed in comparison
with other implementations. While some alternative methods can approximate generic
convex sets efficiently, they are inefficient for computing polytopes with finitely many
extreme points. Our characterization of B is similar to the one in Stahl (1991), who
finds a closed form solution for the infinitely repeated prisoner’s dilemma. We show
that this characterization can be used to compute E efficiently for any finite game.

The algorithm could become impractical if the number of vertices increased without
a bound. However, we show that the equilibrium set is actually a polytope, whose
number of vertices can be bounded by a polynomial function of the size of the game.
We provide a simple proof of this result for the two player case in §5. We conjecture
that the result holds for n-player games, but extending the proof is not trivial.

§6 reports some numerical results. JYC report computation times of around 45
minutes for a discretized Cournot duopoly game with 15 actions per firm. We can
compute the set of equilibrium payoffs for the same game with 20 actions per firm in a
few seconds. The computation might be accelerated even more given that the algorithm
can be easily parallelized.1 This dramatic improvement in speed may enable the use of
simulation methods to estimate games in applied work.2

1. Environment

A finite set of players interacts for a countable number of periods indexed by t ∈ N.
Let I denote the set of players, i, j denote typical players, and, for each player i, let
−i = I\{i} denote the set of i’s opponents. At the beginning of each period there is
a publicly observed signal, drawn from a known i.i.d. distribution with rich support.3

1The computation of Ba(W ) for each a are independent and thus can be run in parallel.
2 For a motivation of the importance of this claim see for instance Aguirregabiria and Mira (2007)

or Bajari et al. (2007). While these papers consider dynamic games and we have not yet done this, we
believe that the relevant operator for dynamic games with finitely many states also maps polytopes to
polytopes and thus a similar implementation is possible.

3A large number of distributions work, we only need that it be rich enough so that players can
condition upon it to generate any distribution on the set of action profiles. For the precise meaning of
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After observing the signal, players play a simultaneous move game and the chosen
actions are publicly observed. Since players can condition their choices on past actions
and public signals, our environment is a repeated game with perfect monitoring and
public randomization. Throughout this document we assume that the reader is familiar
with the theory of repeated games, for a more detailed and rigorous analysis see §2 in
Mailath and Samuelson Mailath and Samuelson (2006).

The stage game played at each period is characterized by a tuple
(

A, u
)

. A = ×i Ai

is the set of action profiles, where Ai is a finite set of actions available to i. As usual,
A−i = ×j 6=i Aj denotes the set of action profiles for i’s opponents. u = (ui) : A → R

I

is such that ui represents i’s preferences over action profiles.
Players discount future payoffs with a common discount factor δ ∈ (0, 1). In the

repeated game, each player tries to maximize his average discounted expected payoff
given by:

E

[

(1 − δ)
∞
∑

t=0

δtui(at)

]

, (1)

where {at} is the sequence of action profiles played.
We are interested in the set E ⊆ R

I of payoff vectors corresponding to subgame
perfect Nash equilibria (SPNE) of the repeated game. Loosely speaking, SPNE are
strategy profiles with the property that, conditional on every possible history of the
game, no player could benefit from unilaterally deviating.

2. Generalized dynamic programming

It is well known that E is compact and convex and not empty, however there is no
known closed form characterization for general games. Our analysis starts from the APS
characterization, adapted to games with perfect monitoring and public randomization
by Cronshaw and Luenberger Cronshaw and Luenberger (1994). This section develops
some elements of this theory, in order to justify our algorithm.

Start from an arbitrary compact set of vector payoffs W ⊆ R
I used as an approx-

imation of E. For each action profile a ∈ A define Fa(W ), Ca(W ), Ba(W ) ⊆ R
I to be

the sets given by:4

Fa(W ) = (1 − δ)
{

u(a)
}

+ δW, (2)

Ca(W ) =
{

(1 − δ)ū(a) + δwi(W )
}

+ R
I
+, (3)

Ba(W ) = Fa(W ) ∩ Ca(W ), (4)

where w, ū(a) ∈ R
I are the vectors given by:

wi(W ) = min
w∈W

wi and ūi(a) = max
a′

i
∈Ai

u(a′
i, a−i). (5)

“richness” see Aumann (1974).
4For sets V, W ⊆ R

I and numbers λ ∈ R, we use the notation λV = {λv | v ∈ V } and V + W =
{v + w | v ∈ V, w ∈ W }.
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If players play some pure action profile a ∈ A in the first period, then their total payoff
can be decomposed as v = (1 − δ)u(a) + δv′ for some continuation value v′ ∈ R

I . The
set Fa(W ) is the set of payoffs vectors that can be decomposed in such a way, with
continuation values belonging to the set W .

Fa(W ) describes feasible payoffs without any incentive considerations. Now consider
a strategy profile according players choose a in the first period. If some player i deviated
to a different action in such period, he could get at most ū(a) and the other players could
punish him by switching to strategies that will give him the worst available continuation
value wi. Hence, Ca is exactly the set of payoffs that will make all players willing to
play a on the first period, conditional on their continuation values belonging to W .

Ba(W ) is then the set of payoffs that can be obtained playing a, having a contin-
uation value in W and such that no player would want to deviate on the first period.
Since we allow for public randomization, we can mix actions on the first periods to get
any payoffs in the convex set B(W ) given by:5

B(W ) = co

(

⋃

a∈A

Ba(W )

)

(6)

Fa(E)

Ba(E)

E

b

b

b

b b b

bb

co
(

u(A)
)

u1

u2

(4, 4)

(1, 1)

(0, 5)

(5, 0)

Figure 1 Computing E = B(E) for a prisoner’s dilemma.

Figure (1) illustrates the construction of B(W ) with W = E for a prisoner’s dilemma
example. The set of feasible payoffs is represented by the dashed polygon, and the set of
equilibrium payoffs E = B(E) by the solid polygon. For each a ∈ A, there is a polygon
shaded in gray representing the set Fa(E) consisting of the set of linear combinations
between the vector u(a) and vectors in E with weights (1 − δ) and δ. The hatched
polygons then represent Ba(E) which are obtained by adding incentive compatibility
constraints.

The APS algorithm starts from any compact initial guess W ⊆ R
I that is known to

contain E, and applies the B operator iteratively until a convergence criterion is met. It
is justified by the well known fact that, for every compact set W ∈ R

I , if E ⊆ W then

5For every set V ⊆ RI we use the notation co(V ) too denote its convex hull.
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{Bn(W )} is a ⊆-decreasing sequence that converges to E with respect to the Hausdorff
metric, see for instance Cronshaw and Luenberger (1994).

3. Efficient computation of the APS operator

Different papers suggest different ways of implementing the APS algorithm, which
basically boil down to different methods for approximating the B operator. For example,
JYC use convex polytopes to generate inner and outer approximations, and Cronshaw
uses polynomial interpolations of points known to be in the boundary. Both approaches
involve a time consuming optimization step.

A convex polytope, or simply polytope, is a set W ⊆ R
I that can be described

by a finite set of affine inequalities, i.e., such that W = {w ∈ R
I | Gw ≤ d} for

some G ∈ R
I×N and some d ∈ R

N . Simple algebra shows that for every polytope
W = {w ∈ R

I | Gw ≤ d}, and every a ∈ A, we can write Ba(W ) as:

Ba(W ) =

{

v ∈ R
I

∣

∣

∣

∣

(

GW

−I

)

v ≤

(

δdW + (1 − δ)Gu(a)
−δū(a) − (1 − δ)w(W )

)}

. (7)

This implies that B(W ) is a polytope. Since we can always pick the polytope F =
co(u(A)) as an initial guess, we can guarantee that all the iterates Bn(F ) will be
polytopes. Then, computing Ba(W ) requires almost no computations. Hence, the only
computations needed to compute B(W ) consist of finding the convex hull of ∪aBa(W ).
For that purpose we suggest a different approach that looks at vertices instead of facets.6

Going back to figure (1), the vertices of Fa(W ) are given by (1 − δ)u(a) + δym,
where {ym} are the vertices of W . Finding the vertices of each Ba(W ) boils down to
identifying which vertices of Fa(W ) satisfy the incentive compatibility constraints, and
finding the intersections of Ba(W ) with the incentive compatibility hyperplanes. For
two player games this can be done efficiently by considering a large number of cases.7

For games with more players we propose a brute force approach. Let Va denote the
vertices of Ba. Start with the set of vertices of Fa as an initial approximation of Va,
and do the following for each player i:

step 1: Find the set Ya composed by the points of Va that satisfy i’s incentive con-
straint, and let Xa = Va\Ya.

step 2: For each y ∈ Ya and each x ∈ Xa, compute the intersection of the line yx

and i’s incentive compatibility constraint.

step 3: Find the vertices of the convex hull of the set of such intersections, let Za

denote such set.

step 4: Update Va to be Ya ∪ Za.

Once again, the only time consuming computation involved is related to finding
convex hulls. There are a different number of methods to do so. For two player games

6Recall that the set of vertices of polygon is the ⊆-smallest set whose convex hull equals the polygon.
7This makes for a very long code but a very short running time.
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the most efficient one is Graham’s scan given the distribution of the points. However,
this method is difficult to generalize to games with many players. For such cases there
are still algorithms that solve the problem but they are time consuming. See the table
to see whether this is a problem or not (I still don’t know because we haven’t finished
computing the table).

One might be concerned about the number of vertices of the sequence Bn(W ) in-
creasing without a bound, making the computation inefficient or impossible. We have
not yet been able to establish a bound for the number of vertices of the sequence, how-
ever, it turns out that E is always a polytope. This suggests that the number of vertices
of Bn(W ) will always remain finite (and moderately small). We only prove the result
for two player games. Although we are yet to come up with a formal argument, we
believe that the result is true for games with an arbitrary (finite) number of players.

Proposition 1 For two player games, E is a polygon with at most 5#A vertices.

4. Some numerical experiments

Figure (2) show the sequence of iterations generated by the algorithm for a pris-
oner’s dilemma game. The left panel corresponds to a sequence starting from co(u(A))
as an initial approximation, while the right panel corresponds to a sequence starting
from a strictly larger polygon. It is noteworthy that the number of vertices of the
approximations increases after the first application of B, but then decreases monoton-
ically. Also, the sequence of vertices appear to follow lines, most of which are parallel
to payoff differences u(a) − u(a′). We observe similar patterns for different games.
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Figure 2 Sequence of approximations for a prisoner’s dilemma.

To be able to compare the performance of our program versus other existent algo-
rithms, we considered a Bertrand duopoly example with differentiated products from
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JYC. We only write the profits (payoffs) as a function of prices (actions):

πi(p) =
(

pi − c
)

· max
{

0 , 1 + ap−i + bpi

}

, (8)

where c, a, b ∈ R++. We used the parameter values a = 0.5, b = 0.25, c = 0.1. Table (1)
reports our average computation times in seconds (over 100 runs) for different values
of n and δ.

n δ = 0.3 δ = 0.5 δ = 0.7 δ = 0.9

5 0.24 0.43 0.49 0.48
10 0.41 1.02 1.05 1.07
20 1.00 3.35 3.45 3.47
50 5.55 21.72 22.43 22.58

Table 1 Computing times in seconds for a Bertrand duopoly example.

Figure (3) shows the resulting approximation of the equilibrium set with δ = 0.6
and n = 250. The fact that it appears to have curvature suggests that E need not be a
polytope for games with infinite action spaces. Hence, our method can be applied only
to finite games or finite approximations of infinite games.
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Figure 3 Equilibrium for Bertrand duopoly game with n = 100 and δ = 0.6.
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A. Proof of the main theorem

The set of extreme points of a convex set W ⊆ R
I is the set of points that cannot be

written as a linear combination of other points in W , that is Ext(W ) = {w ∈ W | w 6∈
co(W \{w})}. The KreinÂ–Milman theorem states that W = co(Ext(W )). Furthermore, a
convex set W ⊆ R

I is a polytope if and only if ext(W ) is finite and, in that case, the notion
of extreme point corresponds to the notion of vertex. The proof that we provide counts the
extremum points of E and shows that there are at most 5#A of them. For the proof we use
the notation: X = Ext(E), Fa = Fa(E), Ca = Ca(E) and Ea = Ba(E).

Lemma 2 For every SPNE payoff v ∈ Ea, if no player’s incentive compatibility constraints

are binding, then there is another equilibrium payoff in the line segment connecting v with

u(a), i.e.,
(

∀a ∈ A
)(

∀v ∈ Ea\C0
a

)(

∃λ ∈ (0, 1)
)(

λu(a) + (1 − λ)v ∈ Ea

)

Proof. Fix some a ∈ A and some v ∈ Ea\C0
a . Since Ea ⊆ Fa we know that w = 1

δ
v+ δ−1

δ
u(a) ∈

E. By convexity of E we know that vµ = µw + (1 − µ)v ∈ E for every µ ∈ (0, 1). Since C0
a is

an open set, we know that for λ close to 1 we have (1 − δ)u(a) + δvµ ∈ C0
a ∩ Fa ⊂ Ea. Finally

notice that (1 − δ)u(a) + δvµ = λu(a) + (1 − λ)v for λ = (1 − δ)(1 − µ) ∈ (0, 1). �

Lemma 3 Every extreme SGPNE payoff can be obtained playing a pure strategy on the first

period, i.e., X =
⋃

a∈A Ea.

Proof. Since E = co(∪aEa) then we know that any payoff v ∈ E\ ∪a Ea can be written as a
linear combination of payoffs in ∪aEa ⊆ E and thus cannot be an extreme point. �
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Lemma 4 Every extreme SGPNE payoff corresponds either to a pure action payoff or has

some player’s incentive constraint saturated, i.e.,
(

∀a ∈ A
)(

X ∩ Ea ⊆ {u(a)} ∪ ∂Ca

)

.

Proof. Now consider any v ∈ Ea ∩ C0
a\{u(a)}. By lemma (2) there exists some λ ∈ (0, 1) such

that vλ = λu(a) + (1 − λ)v ∈ Ea and since v ∈ Ea we know that w = 1
δ
v + δ−1

δ
u(a) ∈ E. Now

notice that we have v = µvλ + (1 − µ)w for µ = (1 − δ)/(1 − δ + δλ) ∈ (0, 1). Hence v cannot
be an extreme point. �

Fix some a ∈ A and choose any three distinct vertices v1, v2, v3 ∈ V ∩ Ea saturating the
same player’s incentive constraint, i.e. such that v1

i = v1
i = v3

i = (1 − δ)ūi(a) + δwi for some
i ∈ I. Without loss of generality we can assume that that v1

−i > v2
−i > v3

−i. However, this
implies that v2 is a linear combination of v1 and v2 and thus it cannot be an extreme point
of E. Hence there are at most two vertices in X ∩ Ea that saturate each player’s incentive
compatibility constraint. By lemma (4) and the fact that there are only two players, this
implies that #

(

X ∩ Ea

)

≤ 5. Hence, by lemma (3) we have that #X =
∑

a∈A #(X ∩ Ea) ≤
∑

a∈A 5 = 5#A. Finally, by the Krein-Milman theorem we know that E = co(X) and hence
E is the convex hull of at most 5#A vertices.

QED

Ü///

9


	Environment
	Generalized dynamic programming
	Efficient computation of the APS operator
	Some numerical experiments
	Proof of the main theorem

