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Abstract We find that, for sufficiently risk-averse agents, strict
dominance by pure or mixed actions coincides with dominance by
pure actions in the sense of Börgers (1993), which, in turn, coincides
with the classical notion of strict dominance by pure actions when
preferences are asymmetric. Since risk-aversion is a cardinal feature,
all finite single-agent choice problems with ordinal preferences admit
compatible utility functions which are sufficiently risk-averse as to
achieve equivalence between pure and mixed dominance. This result
extends to some infinite environments.

Keywords Rationalizability · dominance · ordinal preferences · risk
aversion

JEL classification D81 · C72

Suppose that a rational agent must choose between three actions: betting that an
event E occurs, betting that E does not occur, or not betting at all. The agent’s
preferences are represented by the von Neumann-Morgenstern (vNM) utility function
summarized in Figure 1. Notice that the ordinal ranking of action-state pairs remains
unchanged as long as 0 < γ < 2. Also, not betting is not strictly dominated by
any pure action, and, if γ ≥ 1, it is also not strictly dominated by any mixed action.
However, if γ < 1, then it becomes strictly dominated by the mixed action which
mixes uniformly between betting on E and betting on not E.

∗This paper originated from a conjecture by Edward Green. We are thankful for his guidance and
support, as well as the useful comments from Lisa Posey, Nail Kashaev, Lidia Kosenkova, Jonathan
Weinstein, two anonymous referees, and the attendants of the 2014 Spring Midwest Trade and Theory
Conference at IUPUI, and the 25th International Game Theory Conference at Stony Brook University.
We gratefully acknowledge the Human Capital Foundation, (http://www.hcfoundation.ru/en/)
and particularly Andrey P. Vavilov, for research support through the Center for the Study of Auc-
tions, Procurements, and Competition Policy (http://capcp.psu.edu/) at the Pennsylvania State
University. All remaining errors are our own.
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E not E

bet on E 2 0

bet on not E 0 2

do not bet γ γ

Figure 1 Payoff matrix for introductory example, where γ ∈ (0, 2).

Here, γ can be thought of as measuring the degree of concavity or risk-aversion of
the agent’s vNM utility function. Hence, we see that dominance by pure strategies
coincides with dominance by mixed strategies if the agent is sufficiently risk-averse,
and there exists a sufficiently risk-averse utility function which is compatible with the
given ordinal preferences. In the rest of the paper, we show that these two observations
continue to hold for a large class of decision problems under uncertainty with ordinal

preferences.
We compare strict dominance by pure or mixed actions (Mu-dominance) with the

notion of dominance by pure actions (P -dominance) introduced by Börgers (1993).1

An action is P -dominated if and only if it is weakly dominated by a pure action,
conditional on any given set of states.2 P -dominated actions are always Mu-dominated,
but the converse need not be true.

A mixed action could dominate an action that is not P -dominated, because mix-
ing enables the agent to average good and bad outcomes corresponding to different
action-state pairs. However, mixing also exacerbates the agent’s uncertainty about
the outcome of the environment, by adding uncertainty about the result of using her
own randomization device. Hence, the more risk-averse the agent is, the less appealing
mixing will be.3 We find that Mu-dominance reduces to P -dominance for sufficiently
risk-averse agents, according to a specific measure which we call timidity (propositions
3 and 5).4 In particular, the set of sufficiently timid utility functions includes all

1We index Mu-dominance by u to highlight the fact that it depends on the cardinal information
embedded in vNM utility functions. In contrast, P -dominance only depends on the agent’s ordinal
state-contingent preferences over actions.

2In general, when indifference is allowed, for an action to be strictly dominated by a pure action
implies that it is P -dominated, which implies in turn that it is weakly dominated by a pure action.
In the generic case in which all state-contingent preferences are strict, these three notions of pure
dominance coincide.

3Our research is in a Bayesian framework, so we use “risk” and “uncertainty” as synonyms. Never-
theless, our intuition is closely related to the work of Klibanoff (2001). He asks under which conditions
would an uncertainty averse agent be willing to choose mixed actions. As it turns out, the trade-off
between averaging outcomes (uncertainty) and increasing variance (risk) plays a prominent role.

4These results are similar in spirit to Lemma 1 in Chen and Luo (2012), which implies that, in
“concave-like” games, an action is Mu-dominated if and only if it is strictly dominated by a pure
action. However, their lemma is interesting only for uncountable environments (including mixed
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CARA functions that are sufficiently risk-averse in the familiar sense.
A vNM utility function is said to be strongly compatible with the environment if

it represents the ordinal preferences of the agent over action-state pairs. Any strictly
concave and strictly monotone transformation of utility preserves strong compatibility
while increasing timidity. In this manner, we find that if either the action space or
the state space is finite, then there exists a strongly compatible vNM utility function
which generates equivalence between P -dominance and Mu-dominance (Corollary 4).
However, the degree of timidity required grows linearly with the size of the environ-
ment, and there are countable environments in which strong compatibility precludes
dominance equivalence.

By relaxing the definition of compatibility, it is still possible to obtain dominance
equivalence in a large class of infinite environments. If preferences are interpreted
as revealed choices, then it is meaningless to compare rankings across states. We
say that a vNM utility function is compatible with the environment if it represents
the given state-contingent ordinal preferences over actions. If only compatibility is
required, dominance equivalence is possible in all countable environments satisfying a
discreteness assumption (Corollary 6).

Our work is closely related to Börgers (1993). Using our language, Börgers’ main
result can be expressed as follows. For finite environments, if an action is not P -
dominated, then there exists a strongly compatible vNM utility function –which may

depend on the action– according to which the action is also not Mu-dominated. Also,
while Ledyard (1986) works in a very different context, some of his results have im-
portant implications for our environment. In particular, his Corollary 5.1 implies that
every finite choice environment without P -dominated actions admits a compatible
vNM utility function –which may not be strongly compatible– according to which there
are no Mu-dominated actions.

We extend Börger’s result by showing that a single vNM utility function can be
used for all actions. While his result has the logical form: “for every action, there
is a utility function such that. . . ”; our result has the logical form: “there is a utility
function such that, for every action. . . ”. We extend Ledyard’s result by showing that
this is possible even if strong compatibility is imposed. Also, we establish equivalence
of the entire dominance relations and not just the undominated sets, we provide tight,
intuitive, and sufficient conditions on utility, and we show that dominance equivalence
is attainable in some infinite environments.

After writing this paper, we encountered the recent work of Weinstein (2014) whose
results complement our own. First, while we focus on extreme risk-aversion, his results
imply that, for CARA agents with extreme risk-seeking attitudes, every action which
is not a best reply to a degenerate belief is Mu-dominated. Additionally, he finds that,
in the context of a game, when agents are either extremely risk-averse or extremely
risk-loving, all mixed equilibria become almost pure, in the sense that each player

extensions of finite environments). In finite or countable environments –like the ones we consider– if
an agent has concave-like preferences, then there exists a pure action which P -dominates every other
action.
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plays some pure action with probability arbitrarily close to 1.
Dominance relations are important for rationalizability as a solution concept for

games (Bernheim, 1984, Pearce, 1984). Under standard assumptions, rationalizability
is equivalent to iterated Mu-dominance. Börgers’ result thus implies that, when only
ordinal preferences are common knowledge, then rationalizability is equivalent to it-
erated P -dominance (Epstein, 1997, Bonanno, 2008).5 Our analysis implies that the
equivalence extends to situations in which utility functions are common knowledge
among the players, but only ordinal preferences are known to an outside observer.
Furthermore, it also allows to relate observations arising from different situations, as
in generalized revealed preference theory (Chambers et al., 2010).

1. Single-agent choice problems

We consider a single-agent environment characterized by (A, X,<). X = {x, y, . . .}
is a nonempty set of states of Nature, A = {a, b, . . .} is a set of (pure) actions, and <

is a transitive and complete preference relation on A×X. <x denotes state-contingent
preferences over actions conditional on state x, i.e., a <x b if and only if (a, x) < (b, x).

Let [a]x = {b ∈ A | a ∼x b} denote the set of actions that are indifferent to a
conditional on x. Throughout the paper we impose the following assumption, which
essentially requires the quotient set A/ ∼x to be isomorphic to a subset of Z, for
every state x. While the assumption does limit the applicability of the results, it is
satisfied by all finite environments, and it leaves sufficient space to accommodate many
interesting infinite environments.

Assumption 1 The collection of equivalence classes {[c]x | a ≻x c ≻x b} is finite for
every pair of actions a and b and every state x.

A vNM utility function u ∈ R
A×X is compatible with the environment if it preserves

state-contingent preferences, i.e., if u(a, x) ≥ u(b, x) if and only if a <x b. It is strongly

compatible if it also preserves preferences across states, i.e., if u(a, x) ≥ u(b, y) if and
only if (a, x) < (b, y). We extend the domain of utility functions to mixed actions
α ∈ ∆(A) and beliefs µ ∈ ∆(X) in the usual way, and we denote payoff vectors
associated to pure or mixed actions by ~u(α) = (u(α, x))x∈X.

Example 1 Going back to the motivating example from the introduction, let X =
{1, 2} and E = {1}, and let a1 correspond to betting on E, a2 to betting on X \ E,
and a0 to not betting. A vNM utility function u is strongly compatible if and only
if it can be written as in Figure 1 after a positive affine transformation. Notice that
this implies that that u(a0, 1) = u(a0, 2). In contrast, u is compatible as long as
u(ax, x) < u(a0, x) < u(ay, x) for all x, y ∈ X with x 6= y. Notice that this does not

5Lo (2000) extends this result to all models of preferences satisfying Savage’s P3 axiom.
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Figure 2 vNM utility functions for Example 1 with X = {1, 2}.

impose any restrictions on the differences u(a, x)−u(b, y) when x 6= y. Figure 2 shows
a strongly compatible vNM utility function (left panel), and a vNM utility function
which is compatible but not strongly compatible (right panel).

2. Pure and mixed dominance

Loosely speaking, an action is dominated if there exist different actions yielding
preferred outcomes regardless of the state. By dominance by pure actions, we mean
the notion introduced by Börgers (1993), according to which an action is dominated
if and only if it is weakly dominated conditional on each subset of states.

Definition 1 An action a is P -dominated in B ⊆ A, if for every nonempty set Y ⊆ X
there exists some b ∈ B such that b <y a for all y ∈ Y , with strict preference for at
least one state y ∈ Y . P (B) denotes the set of P -dominated actions in B.

P -dominance extends the classical notion of strict dominance by pure actions, and
both notions coincide when preferences are asymmetric. An agent who maximizes ex-
pected utility would never choose P -dominated actions, even if it they were not strictly
dominated by pure actions. This is because, for an action to be a best response to
some belief, it cannot be weakly dominated over the support of such beliefs. However,
not being P -dominated is also not sufficient for being potentially optimal. It is well
known that an action is potentially optimal if and only if it is not strictly dominated
by a pure or mixed action according to the following definition.6

Definition 2 An action a is Mu-dominated in B ⊆ A given a compatible vNM utility
function u, if there exists a mixed action α such that supp(α) ⊆ B and u(α, x) >
u(a, x), for every state x ∈ X. Mu(B) denotes the set of Mu-dominated actions in B.

6This result can be traced back to Wald (1947).
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All P -dominated actions are also Mu-dominated relative to any compatible vNM
utility function, but actions that are not P -dominated could still be Mu-dominated.
We are interested in utility functions which guarantee that, if an action is Mu-dominated
by a mixture α, then it is also P -dominated in the support of α. This requirement is
equivalent to the following definition.

Definition 3 [Dominance equivalence] A compatible vNM utility function u generates
dominance equivalence if P (B) = Mu(B) for all B ⊆ A.

What conditions over vNM utility functions imply dominance equivalence? When
does there exist a compatible or strongly compatible vNM utility function satisfying
such conditions? The answer to these questions is closely related to risk aversion, as
measured by the timidity coefficient introduced in the next section. Before proceeding,
it is instructive to revisit our motivating example to illustrate the role of risk aversion.

Example 2 Consider once again the example from the introduction. Clearly, there
are no P -dominated actions, and every action other than a0 is optimal conditional on
some state. Hence, dominance equivalence holds if and only if a0 6∈ Mu(A), which
holds if and only if ~u(a0) is above the line containing ~u(a1) and ~u(a2), see Figure 2.
This simply means that the upper boundary of the set of feasible payoffs is concave, or,
equivalently, that u( · , x) exhibits decreasing differences (on average for compatibility,
and always for strong compatibility). In environments with more states, dominance
equivalence requires that finite differences should decrease sufficiently fast.

3. Timidity

Given a compatible vNM utility function u and a state x, we use the following
notation. The set of possible payoffs given x is denoted by U(x) = {u(a, x)|a ∈ A}, and
its supremum and infimum are denoted by ū(x) = sup U(x), and u(x) = inf U(x). Also,
let u−(a, x) = sup{u0 ∈ U(x)|u0 < u(a, x)} denote the best possible payoff conditional
on x which is worse than u(a, x). Similarly, let u+(a, x) = inf{u0 ∈ U(x)|u0 > u(a, x)}.
Assumption 1 implies that u−(a, x) < u(a, x) whenever u(a, x) > u(x), and u+(a, x) >
u(a, x) whenever u(a, x) < ū(x).

Definition 4 Given a compatible vNM utility function u and an action state pair
(a, x), the timidity coefficient of u at (a, x) is the number τu(a, x) given by τu(n, x) =
+∞ if u(a, x) ∈ {u(x), ū(x)}, and otherwise given by:

τu(a, x) =
u(a, x) − u−(a, x)

ū(x) − u(a, x)
. (1)
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In order to understand what timidity entails, it is useful to compare it with familiar
measures of risk-aversion. Using finite differences instead of derivatives, the analogue
of the Arrow-Pratt coefficient of absolute risk aversion for our discrete setting could
be expressed as follows (see for instance Bohner and Gelles (2012)):

ρu(a, x) = 1 −
u+(a, x) − u(a, x)

u(a, x) − u−(a, x)
. (2)

This coefficient is large when the local gain (u+(a, x) − u(a, x)) is small compared
with the local loss (u(a, x) − u−(a, x)). In contrast, timidity compares the global gain
(ū(x) − u(a, x)) with the local loss (u(a, x) − u−(a, x)). Timidity requires that the
potential loss of getting a slightly worse outcome should be more important than the
potential gain of switching to the best possible outcome. A timid agent would refuse
to spend a single dollar on a lottery ticket that promises to pay (with sufficiently low
probability) more money that she could spend during a hundred lifetimes.

Example 3 Suppose each action-state results in a monetary prize given by a function
z ∈ Z

A×X
++ such that {z(a, x) | a ∈ A} = N for all x ∈ X. Further suppose that

the agent’s preferences only depend on her preferences over money, represented by
v ∈ R

R++. In this case, u = v ◦ z is a strongly compatible vNM utility function. For
a CARA agent with v(m) = − exp(−rm), r > 0, the agent also exhibits constant
timidity:

τu(a, x) =
− exp(−r z(a, x)) + exp(−r (z(a, x) − 1))

exp(−r z(a, x))
= exp(r) − 1. (3)

Before proceeding to the main results, we conclude our analysis of timidity by
noting that it satisfies one of Pratt’s classic criteria. The following proposition implies
that, if an agent becomes uniformly more risk-averse as measured by ρu, then she also
becomes uniformly more timid.

Proposition 1 Fix an action a, a state x and two compatible vNM utility functions

u and v. If the set of mixed actions that are preferred to a given u and x is contained

in the set of mixed actions that are preferred to a given v and x, then u is more timid

than v at (a, x).

4. Dominance equivalence and risk aversion

Let Wx(a) = {b ∈ A | a ≻x b} denote the set of actions that are worse than a
conditional on x, and consider any compatible vNM utility function u. The following
lemma states that if u is sufficiently timid at (a, x), then a is not Mu-dominated by
any mixed action α that assigns sufficient probability to Wx(a). The rest of our results
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looks for conditions on u that guarantee that this can be done whenever a is not P -
dominated. The conditions essentially require u to be sufficiently timid relative to the
size of the environment.

Lemma 2 Given a compatible vNM utility function u, a pure action a, and a mixed

action α, if there exists a state x such that (τu(a, x) + 1) · α(Wx(a)) ≥ 1, then a is not

dominated by α given u.

4.1. Finite environments

Let K = min{‖A‖, ‖X‖}. When K is finite, Caratheodory’s theorem (Rockafellar,
1996, Theorem 17.1) implies that an action is Mu-dominated if and only if it is dom-
inated by a mixed action which mixes at most K distinct actions. For every such α,
there exists some action a such that α(a) ≥ 1/K. Therefore, the condition of Lemma
2 holds for all P -undominated actions, whenever the timidity coefficient is weakly
greater than K − 1.

Proposition 3 Given a compatible utility function u, if τu(a, x) ≥ K − 1 for all x
and a, then u generates dominance equivalence.

Suppose that K is finite and A × X is countable. Then there exist strongly com-
patible vNM utility functions n∗ ∈ Z

A×X which only take integer values. For example,
if A × X were finite, n∗ could be the rank function defined by:

rank(a, x) =
∥

∥

∥

{

(b, y)
∣

∣

∣ (a, x) < (b, y)
}
∥

∥

∥ . (4)

In words, the rank of an action-state pair is the number of action-state pairs that are
weakly worse than it. Let u∗ be the utility function defined by:

u∗(a, x) = − exp
(

− log(K) n∗(a, x)
)

. (5)

If we thought of n∗(a, x) as a monetary prize, then u∗ would represent the preferences
of a CARA agent with with coefficient of risk aversion equal to log(K). Since u∗ is
a strictly monotone transformation of n∗, it is strongly compatible. Furthermore, we
have that u∗(a, x) ≤ 0 and u∗−(a, x) ≥ Ku∗(a, x) for all a and x, which implies that
τu∗ ≥ K − 1. Therefore, Proposition 3 implies the following corollary:

Corollary 4 If either X or A is finite and A × X is countable, then u∗ is a strongly

compatible vNM function, and yields dominance equivalence.

When both X and A are infinite, u∗ is not well defined. The following example
provides a countable environment which does not admit any strongly compatible vNM
utility function generating dominance equivalence.
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Example 4 Let X = N, and suppose the agent must choose a lottery from A =
{a0} ∪ {ax | x ∈ X}. Lottery a0 represents an outside option corresponding to keeping
her initial wealth. Lottery ax represents a fair bet of one dollar against state x, i.e.,
it pays 1 if the true state is different from x and −1 otherwise. Further suppose that
the agent has state-independent strictly monotone preferences over monetary holdings.
After a positive affine normalization, any strongly compatible vNM utility function u
can be written as:

u(a, x) =











γ if a = a0

0 if a = ax

1 otherwise

. (6)

for some γ ∈ (0, 1). Take any such u, and consider any belief µ ∈ ∆(N). For all x ∈ N,
we have that u(a0, µ) = γ and u(ax, µ) = (1 − µ(x)). If a0 were a best response to µ,
then it would be the case that u(a0, µ) ≥ u(ax, µ) and, consequently, µ(x) ≥ γ > 0 for
all x. This would contradict the fact that µ is a probability measure. Hence, it follows
that a0 is Mu-dominated, despite the fact that it is not P -dominated.

4.2. Countable environments

When both X and A are infinite, guaranteeing dominance equivalence requires
unbounded degrees of timidity. This is possible for countable environments if we do
not require strong compatibility, because we may choose utility functions whose degree
of timidity is always finite, but diverges to infinity along a sequence of states.

Proposition 5 Given a compatible vNM utility function u, if X is countable and:

∑

x∈X

1

1 + τu(a, x)
≤ 1, (7)

for every action a, then u generates dominance equivalence.

The following example shows that the proposition is tight, in that, given any finite
or countable X and a sufficiently large action space A, there always exist preferences
such that: a compatible vNM utility function generates dominance equivalence if and

only if it satisfies (7) for every action.

Example 5 Let X be any finite set with at least two elements, and let A and < be as
in Example 4. Let u be any compatible vNM utility function such that:

1

T
≡
∑

x∈X

1

1 + τu(a0, x)
> 1. (8)

Simple algebra shows that a0 is strictly dominated by the mixed action α given by
α(a0) = 0 and α(ax) = T/(1 + τu(a0, x)) for x ∈ X.
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If X is countable, then there exists an injective function h ∈ N
X . Also, by As-

sumption 1, there exists a compatible vNM utility function n∗∗ ∈ Z
A×X which only

takes integer values. Fix any such functions, and let u∗∗ be the vNM utility function
given by:

u∗∗(a, x) = − exp
(

− h(x) n∗∗(a, x)
)

. (9)

Clearly, u∗∗ is also compatible with the environment. Furthermore, we have that
u−∗∗(a, x) ≥ eh(x)u∗∗(a, x) and u∗∗ < 0 for all a and x. Therefore:

∑

x∈X

1

1 + τu∗∗(a, x)
=
∑

x∈X

ū∗∗(x) − u∗∗(a, x)

ū∗∗(x) − u−∗∗(a, x)
<
∑

k∈N

1

ek
< 1. (10)

Proposition 5 thus implies that:

Corollary 6 If X is countable, then u∗∗ is a compatible vNM function and yields

dominance equivalence.

5. Summary and discussion

A vNM utility function guarantees that P -dominance coincides with Mu-dominance
if it is sufficiently timid. For countable environments with discrete action spaces, it is
always possible to find a sufficiently timid vNM utility function that is compatible with
ordinal preferences over actions conditional on states. For finite environments with
ordinal preferences over action-state pairs, it is always possible to find a sufficiently
timid vNM utility function that is strongly compatible. In what follows, we discuss
the application of the results to multi-agent environments, as well as some lines for
further inquiry.

Rationalizability.– A strategic form game can be thought of as a collection of simul-
taneous single-agent decision problems. Rationalizability is then equivalent to the
iterated removal of strategies that are not Mu-dominated. Our results then imply
that, given any finite collection of finite games with ordinal payoffs, there exists a
profile of compatible vNM utility functions such that, in each game, the set of ratio-
nalizable strategies corresponds to the set of strategies surviving the iterated removal
of P -dominated strategies. In this sense, rationalizability and iterated P -dominance
are equivalent in the absence of cardinal information.

Worst case vs. average bounds.– The degree of timidity assumed in our main results
guarantees that dominance equivalence holds even in pathological scenarios with intri-
cate preferences. In particular, it guarantees that a P -undominated action that yields
the second worst outcome conditional on every state is potentially optimal, even if
there are other actions yielding very good outcomes in all but one state.
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An interesting problem not solved in this paper is to look for expected (rather worst-
case scenario) bounds on timidity. For instance, one could ask for the probability that
a uniformly generated utility function u will generate equivalence. One step further,
having fixed only the size of the environment, one could ask for the expectation of this
probability given uniformly generated preferences.

Uncountable environments.– Proposition 5 can be easily extended to accommodate
environments with uncountable state spaces satisfying some technical assumptions.7

On the other hand, our proofs depend crucially on Assumption 1, which, for most
practical purposes, requires the action space to be countable. This is because the
definition of timidity heavily relies on the fact that there exists some δ > 0 such that
|u(a, x) − u(a′, x)| ≥ δ whenever u(a, x) 6= u(a′, x).
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A. Proofs

Proof of Proposition 1. Fix an action a ∈ A and a state x ∈ X, and let u and v be compatible
vNM utility functions such that

{α ∈ ∆(A) | u(α, x) ≥ u(a, x)} ⊆ {α ∈ ∆(A) | v(α, x) ≥ v(a, x)}. (11)

We want to show that τu(a, x) ≥ τv(a, x). If a is either <x-maximum or <x-minimum, then
τu(a, x) = +∞ and τv(a, x) = +∞ by definition, and the result is trivial. Hence, we assume
for the rest of the proof that u(x) < u(a, x) < ū(x).

By Assumption 1, there exists an action b ∈ A such that u(b, x) = u−(a, x), and, con-
sequently, v(b, x) = v−(a, x). Let (am) be a sequence of actions such that am ≻x a for all
m, limm→∞ u(am, x) = ū(x), and limm→∞ v(am, x) = v̄(x). Also, for each θ ∈ [0, 1] and
each m ∈ N, let αm,θ be the mixed action that plays am with probability θ, and b with
probability 1 − θ. For all such m we have that u(αm,1, x) > u(a, x) > u(αm,0, x). Hence,
since expected utility is continuous in the mixing probabilities, there exists θ(m) ∈ (0, 1)
such that u(αm,θ(m), x) = u(a, x). After some simple algebra this implies that:

u(a, x) − u−(a, x)

u(am, x) − u(a, x)
=

θ(m)

1 − θ(m)
. (12)

By (11), we have that v(αm,θ(m), x) ≥ v(a, x), which implies that:

v(a, x) − v−(a, x)

v(am, x) − v(a, x)
≤

θ(m)

1 − θ(m)
. (13)

Using (12) and (13) and taking limits as m goes to infinity thus yields the desired result

τv(a, x) = lim
m→∞

v(a, x) − v−(a, x)

v(am, x) − v(a, x)
≤ lim

m→∞

u(a, x) − u−(a, x)

u(am, x) − u(a, x)
= τu(a, x). (14)

�

Proof of Lemma 2. Let β = α(Wx(a)). Being that u(b, x) ≤ u−(a, x) for b ∈ Wx(a), and
u(b, x) ≤ ū(x) for b ∈ B, it follows that:

u(α, x) − u(a, x) ≤ β
(

u−(a, x) − u(a, x)
)

+
(

1 − β
)(

ū(x) − u(a, x)
)

= −β

(

u−(a, x) − u(a, x)

ū(x) − u(a, x)

)

(

ū(x) − u(a, x)
)

+
(

1 − β
)(

ū(x) − u(a, x)
)

=
(

1 − β · (τu(a, x) + 1)
)(

ū(x) − u(a, x)
)

≤ 0. (15)

�

Proof of Proposition 3. Fix a set B ⊆ A, an action a ∈ A \ P (B), and a mixture α with
α(B \ {a}) = 1. There exists some Y ⊆ X conditional on which a is not weakly dominated
in B. Assume without loss of generality that for all b ∈ B \{a} there exists some x ∈ Y such
that b 6∼x a. This implies that for all b ∈ B \ {a} there also exists some x ∈ Y such that
a ≻x b, i.e., B \ {a} ⊆ ∪x∈Y Wx(a). Since K = min{‖A‖, ‖X‖} < +∞, there exist a finite
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subset Z = {x1, . . . , xk} ⊆ Y with cardinality k ≤ K, and such that B \ {a} ⊆ ∪x∈ZWx(a).
Therefore:

∑

x∈Z

α(Wx(a)) ≥ α(B \ {a}) = 1 ≥
k

K
=
∑

x∈Z

1

K
≥
∑

x∈Z

1

τu(a, x) + 1
. (16)

This implies that there exists a state x such that (τu(a, x) + 1)α(Wx(a)) ≥ 1, and the result
thus follows from Lemma 2. �

Proposition 5. Let a, B, α and Y , be as in the proof of Proposition 3. As before, we know
that B \ {a} ⊆ ∪x∈Y Cx(a, B), and thus:

∑

x∈Y

α(Cx(a, B)) ≥ 1 ≥
∑

x∈X

1

1 + τu(a, x)
≥
∑

x∈Y

1

1 + τu(a, x)
. (17)

Hence, there exists x ∈ Y such that (τu(a, x) + 1)α(Cx(a, B)) ≥ 1, and the result follows
from Lemma 2. �

B. Uncountable state space

Dominance equivalence is still possible in some environments with countable action
spaces, and uncountable state spaces. Suppose that (X, X , λ) is a measure space, and
let Z(a, b) = {x ∈ X | a ≻x b} ∈ X . We only require the two following assumptions.

Assumption 2 (∃δ > 0)(∀a, b ∈ A)(Z(a, b) 6= ∅ ⇒ Z(a, b) ∈ X ∧ λ(Z(a, b)) ≥ δ).

Assumption 3 There exists a measurable function f : X → (0, 1) such that
∫

Xf dλ ≤ 1.

Assumption 2 requires that if an action a is preferred to an action b in at least one state,
then it has to be preferred to it in a sufficiently large set. It plays a similar role as our
requirement that A should be discrete, but it is significantly weaker. Assumption 3 makes it
possible to have timidity grow “sufficiently fast” as to guarantee that the condition of lemma
2 is satisfied at some point. It is satisfied, for instance, when X ⊆ R and λ is the Lebesgue
measure.

Since A is assumed to be countable, there exists some compatible vNM utility function
n ∈ R

A×x. Let h⋆(x) = − log(δf(x)), and define the vNM utility function u⋆ by:

u⋆(a, x) = − exp(−h⋆(x) n(a, x)) (18)

Proposition 7 Under assumptions 2 and 3, u⋆ is a compatible vNM utility function which
generates dominance equivalence.

Proof. Since u( · , x) is a monotone transformation of n( · , x), u⋆ is compatible. For domi-
nance equivalence, fix a set B ⊆ A, a P -undominated action a ∈ A \ P (B), and a mixed
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action α with α(B \ {a}) = 1. As, in the proof of proposition 3, the fact that a 6∈ P (B)
implies that B \ {a} ⊆ ∪x∈XWx(a). Therefore:

∫

X

α(Wx(a)) dλ =

∫

X

∑

a∈Wx(a)

α(a) dλ =

∫

X

∑

a∈A

1(a ∈ Wx(a))α(a) dλ

=
∑

a∈A

α(a)

∫

Z(a,b)

dλ =
∑

a∈A

α(a)λ(Z(b, a)) ≥
∑

a∈A

α(a)δ = α(A)δ = δ, (19)

where we used the fact that x ∈ Z(a, b) if and only if b ∈ Wx(a). Now, let g⋆
x(m) =

− exp(−h⋆(x) m) so that u(a, x) = g⋆
x(n(a, x)). Since g⋆

x(m−1) = eh⋆(x)g⋆(m) and g⋆(m) < 0
for all x and m ∈ N(x), it follows that:

∫

X

1

1 + πu(a, x)
dλ <

∫

X

exp(−h⋆(x)) dλ = δ

∫

X

f(x) dλ ≤ δ. (20)

From (19) and (20), that there exists x such that (τu(a, x) + 1)α(Wx(a)) ≥ 1, and the result
thus follows from Lemma 2. �

Ü///

14


	Single-agent choice problems
	Pure and mixed dominance
	Timidity
	Dominance equivalence and risk aversion
	Finite environments
	Countable environments

	Summary and discussion
	Proofs
	Uncountable state space

