Cournot competition

Bruno Salcedo1

Supplementary material for Knowledge, belief and rationality Pennsylvania State University \cdot New Economic School \cdot Higher School of Economics Summer 2013

Two firms $i \in \{1, 2\}$ simultaneously choose quantities $q_i \in Q_i = \mathbb{R}_+$. The market price is determined by the inverse demand function:

$$P(s) = P_0 - (q_1 + q_2),$$
 a, $b \in \mathbb{R}_{++}$

The firms have constant marginal cost $k \in \mathbb{R}_{++}$. Profits are thus given by:

$$u_i(q) = q_i P(q) = -q_i^2 + q_i (P_0 - k - q_{-i})$$

Proposition 1 The only rationalizable quantities are $Q_i = \frac{1}{3}(P_0 - k)$.

Proof. Let $(Q_i^n)_{i\in I,n\in\mathbb{N}}\in\mathbb{R}_+^{I\times\mathbb{N}}$ be the elimination sequence that eliminates *all* strictly dominated strategies at each stage, and let $Q^\infty=\cap_{n\in\mathbb{N}}Q^n$ be the set of rationalizable strategy profiles. That is, $Q^1=Q$, and for all $i\in I$ and all $n\in\mathbb{N}$:

$$Q_i^{n+1} = \{ q_i \in Q_i^n \mid (\exists q_{-i} \in Q_{-i}^n) (\forall q_i' \in Q_i^n) (u_i(q_i, q_{-i}) \ge u_i(q_i', q_{-i})) \}$$

I will show that $Q_i^{\infty} = \{(P_0 - k)/3\}$ for i = 1, 2. For that purpose, let $x \in \mathbb{R}^{\mathbb{N}}$ be the sequence of real numbers defined by:

$$x_1 = \frac{1}{2}$$
 \wedge $\forall n \in \mathbb{N} : x_{n+1} = \frac{1}{2}(1 - x_n)$

It can be easily shown (for instance by induction) that $x_n = -\sum_{i=1}^n (-2)^{-i}$ and, consequently:

$$\lim x_n = \lim \sum_{i=1}^n 2^{-2i+1} - \lim \sum_{i=1}^n 2^{-2i} = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$

Now let $N, M \subseteq \mathbb{N}$ be the sets of natural numbers given by:

$$N = \left\{ n \in \mathbb{N} \mid Q^{2n-1} \subseteq \left[0, x_{2n-1}(P_0 - k) \right]^2 \right\}$$

$$M = \left\{ n \in \mathbb{N} \mid Q^{2n} \subseteq \left[x_{2n}(P_0 - k), \infty \right)^2 \right\}$$

I will show by induction that $N=M=\mathbb{N}$. Notice that for all i and q_{-i} , u_i as a function of s_i is a strictly concave quadratic function, and it is strictly increasing for all $q_i < \mathsf{BR}_i(q_{-i})$ and strictly decreasing for all $q_i > \mathsf{BR}_i(q_{-i})$, where $\mathsf{BR}_i : \mathbb{R}_+ \to \mathbb{R}$ is given by:

$$BR_i(q_{-i}) = \frac{1}{2}(P_0 - k - q_{-i})$$

¹bruno@psu.edu, brunosalcedo.com

²Since the utility functions are linear, it suffices to consider degenerate beliefs. That is, a strategy is a best response if and only if it is a best response to a pure strategy.

Since $Q_{-i} = \mathbb{R}_+$, For all $q_{-i} \in Q_{-i}$ we have:

$$\mathsf{BR}_i(q_{-i}) \le \frac{1}{2}(P_0 - k)$$

Consequently u_i is always decreasing for $q_i > (P_0 - k)/2$, and any such strategy is strictly dominated (by $q_i - \varepsilon$ with $\varepsilon > 0$ small enough). Therefore $Q_i^1 \subseteq [0, (P_0 - k)/2]$, that is, $1 \in N$ and $N \neq \emptyset$.

Now let $n \in N$ be an arbitrary point in N. For all $q_{-i} \in Q_{-i}^{2n-1}$ we have that $q_{-i} \le x_{2n-1}(P_0 - k)$ and thus:

$$\mathsf{BR}_i(q_{-i}) \ge \frac{1}{2} \big(P_0 - k \big) - \frac{1}{2} \big(x_{2n-1} (P_0 - k) \big) = (P_0 - k) \left(\frac{1}{2} (1 - x_{2n-1}) \right) = \big(P_0 - k \big) x_{2n}$$

Consequently u_i is always increasing for $q_i < x_{2n}(P_0 - k)$, and any such strategy is strictly dominated (by $q_i + \varepsilon$ with $\varepsilon > 0$ small enough). Therefore $Q_i^{2n} \subseteq [(x_{2n})(P_0 - k), \infty)$, that is, $n \in M$. Hence we know that $N \subseteq M$.

Furthermore, for all $q_{-i} \in Q_{-i}^{2n}$ we have that $q_{-i} \ge x_{2n}(P_0 - k)$ (since $n \in M$) and thus:

$$\mathsf{BR}_i(q_{-i}) \le \frac{1}{2} \big(P_0 - k \big) - \frac{1}{2} \big(x_{2n}(P_0 - k) \big) = (P_0 - k) \left(\frac{1}{2} (1 - x_{2n}) \right) = x_{2n+1}(P_0 - k)$$

Consequently u_i is always decreasing for $q_i > x_{2n+1}(P_0 - k)$ and any such strategy is strictly dominated. Therefore $Q_i^{2(n+1)-1} = Q_i^{2n+1} \subseteq [0, (x_{2n+1})(P_0 - k)]$, that is, $n+1 \in N$. Therefore, by the induction principle $M = N = \mathbb{N}$, thus:

$$Q_i^{\infty} \subseteq \bigcap \left\{ \left[x_{2n}(P_0 - k), x_{2n-1}(P_0 - k) \right] \mid n \in \mathbb{N} \right\}$$

= $\left[\lim x_{2n}(P_0 - k), \lim x_{2n-1}(P_0 - k) \right] = \{ (P_0 - k)/3 \}$

where the first equality follows from the (easily shown) fact that x_{2n-1} and x_{2n} are monotonously decreasing and increasing respectively.

Finally, notice that:

$$BR_i\left(\frac{P_0-k}{3}\right) = \frac{1}{2}(P_0-k) - \frac{1}{2} \cdot \frac{P_0-k}{3} = \frac{P_0-k}{3}$$

Therefore $(P_0 - k)/3$ is i's best response to $q_{-i} = (P_0 - k)/3$. Thus it is rationalizable and it is never eliminated. Hence $Q_i^{\infty} = \{(P_0 - k)/3\}$