Minkowski's separating hyperplane theorem

Bruno Salcedo1

Supplementary material for Knowledge, belief and rationality Pennsylvania State University \cdot New Economic School \cdot Higher School of Economics Summer 2013

Theorem 1 For every pair of convex non-empty sets $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{R}^n$ with disjoint interiors, there exists a non-null vector $\mathbf{z} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and a scalar $\mu \in \mathbb{R}$ such that:

$$\sup\{\mathbf{z}\cdot\mathbf{y}\mid\mathbf{y}\in\mathbf{Y}\}\leq\mu\leq\inf\{\mathbf{z}\cdot\mathbf{x}\mid\mathbf{x}\in\mathbf{X}\}$$

The theorem follows from the two following lemmas.

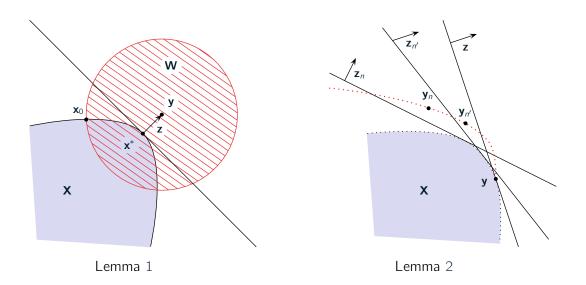


Figure (1) Proof of Minkowski's Separating Hyperplane Theorem

Lemma 1 For every non-empty, closed and convex set $\mathbf{X} \subseteq \mathbb{R}^n$ and every point $\mathbf{y} \in \mathbb{R}^L \setminus \mathbf{X}$, there exists a non-null vector $\mathbf{z} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $\mathbf{z} \cdot \mathbf{y} > \sup\{\mathbf{z} \cdot \mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$.

Proof. Let $\mathbf{X} \subseteq \mathbb{R}^n$ be non-empty and convex and fix a point $\mathbf{y} \in \mathbb{R}^n \backslash \mathbf{X}$. Since $\mathbf{X} \neq \emptyset$ we can fix some arbitrary point $\mathbf{x}_0 \in \mathbf{X}$. Consider the compact non-empty set $\mathbf{W} = \{\mathbf{w} \in \mathbb{R}^n \mid \|\mathbf{y} - \mathbf{w}\|_2 \leq \|\mathbf{x}_0 - \mathbf{y}\|_2\}$ and let $\mathbf{X}' = \mathbf{X} \cap \mathbf{W}$. In words, \mathbf{X}' is the set of points in \mathbf{X} that are as close to \mathbf{y} as \mathbf{x}_0 according to the Euclidean metric. Clearly we have $\mathbf{x}_0 \in \mathbf{X}'$ and thus \mathbf{X}' is a compact non-empty set. Hence, by continuity of the Euclidean norm and Weierstrass' theorem, we know that there exists some point $\mathbf{x}^* \in \arg\min\{\|\mathbf{y} - \mathbf{x}\|_2 \mid \mathbf{x} \in \mathbf{X}'\}$. By construction, \mathbf{x}^* is the point of \mathbf{X} which is closest to \mathbf{y} according to the Euclidean metric. Let $\mathbf{z} = \mathbf{y} - \mathbf{x}^* \in \mathbb{R}^n$, since $\mathbf{y} \notin \mathbf{X}$ we know that $\mathbf{z} \neq \mathbf{0}$.

¹bruno@psu.edu, brunosalcedo.com

Let $\mathbf{x} \in \mathbf{X}$ be an arbitrary point and let $\mathbf{v}: (0,1) \to \mathbb{R}^n$ be the function given by $\mathbf{v}_{\mu} = \mu \mathbf{x} + (1-\mu)\mathbf{x}^*$. By convexity of \mathbf{X} we know that $\mathbf{v} \in \mathbf{X}^{(0,1)}$. Thus, by definition of \mathbf{x}^* , $0 < \|\mathbf{y} - \mathbf{x}^*\|_2 \le \|\mathbf{y} - \mathbf{v}_{\mu}\|_2$ for all $\mu \in [0,1]$ and:

$$0 \ge \|\mathbf{y} - \mathbf{x}^*\|_2^2 - \|\mathbf{y} - \mathbf{v}_{\mu}\|_2^2$$

$$= \mathbf{z} \cdot \mathbf{z} - (\mathbf{y} - (\mu \mathbf{x} + (1 - \mu)\mathbf{x}^*)) \cdot (\mathbf{y} - (\mu \mathbf{x} + (1 - \mu)\mathbf{x}^*))$$

$$= \mathbf{z} \cdot \mathbf{z} - (\mathbf{z} + \mu(\mathbf{x}^* - \mathbf{x})) \cdot (\mathbf{z} + \mu(\mathbf{x}^* - \mathbf{x}))$$

$$= \mathbf{z} \cdot \mathbf{z} - \mathbf{z} \cdot \mathbf{z} - 2\mu \mathbf{z} \cdot (\mathbf{x}^* - \mathbf{x}) - \mu^2(\mathbf{x}^* - \mathbf{x}) \cdot (\mathbf{x}^* - \mathbf{x})$$

$$= -2\mu \mathbf{z} \cdot (\mathbf{x}^* - \mathbf{x}) - \mu^2 \|\mathbf{x}^* - \mathbf{x}\|_2$$

This implies that:

$$\mathbf{z} \cdot (\mathbf{x}^* - \mathbf{x}) \ge -\frac{1}{2}\mu \|\mathbf{x}^* - \mathbf{x}\|_2 \xrightarrow[\mu \to 0]{} 0$$

Hence $\mathbf{z} \cdot \mathbf{x}^* \ge \mathbf{z} \cdot \mathbf{x}$. Since \mathbf{x} was arbitrary, this implies $\mathbf{z} \cdot \mathbf{x}^* = \max\{\mathbf{z} \cdot \mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$. Finally, notice that $0 < \mathbf{z} \cdot \mathbf{z} = \mathbf{z} \cdot (\mathbf{y} - \mathbf{x}^*)$ and thus $\mathbf{z} \cdot \mathbf{y} > \mathbf{z} \cdot \mathbf{x}^*$.

Lemma 2 For every non-empty and convex set $\mathbf{X} \subseteq \mathbb{R}^n$ and every point \mathbf{y}^* in the boundary of \mathbf{X} , there exists a non-null vector $\mathbf{z} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $\mathbf{z} \cdot \mathbf{y} \ge \sup\{\mathbf{z} \cdot \mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$.

Proof. Let $\mathbf{X} \subseteq \mathbb{R}^n$ be a non-empty convex set and consider a boundary point $\mathbf{y} \in \operatorname{fro}(\mathbf{X})$. By definition of boundary, there exists a sequence $(\mathbf{y}_n)_{n \in \mathbb{N}} \in (\operatorname{int}(\mathbb{R}^n \setminus \operatorname{cl}(\mathbf{X})))^{\mathbb{N}}$ such that $\lim \mathbf{y}_n = \mathbf{y}$. By Lemma 1, there exists a sequence $(\mathbf{w}_n)_{n \in \mathbb{N}} \in (\mathbb{R}^n \setminus \{\mathbf{0}\})^{\mathbb{N}}$, such that $\mathbf{w}_n \cdot \mathbf{y}_n > \sup\{\mathbf{w}_n \cdot \mathbf{x} \mid \mathbf{x} \in \operatorname{cl}(\mathbf{X})\}$ for all $n \in \mathbb{N}$. For every $n \in \mathbb{N}$ we have $\mathbf{w}_n \neq \mathbf{0}$ and, consequently $\|\mathbf{w}_n\|_2 > 0$. We can thus define the sequence $(\mathbf{z}_n)_{n \in \mathbb{N}} \in \mathbf{B}^{\mathbb{N}}$ given by $\mathbf{z}_n = \mathbf{w}_n / \|\mathbf{w}_n\|_2$, where $\mathbf{B} = \{\mathbf{v} \in \mathbb{R}^n \mid \|\mathbf{v}\|_2 = 1\}$ is the unit circle in \mathbb{R}^n . This transformation preserves the inequalities $\mathbf{z}_n \cdot \mathbf{y}_n > \mathbf{z}_n \cdot \mathbf{x}$ for all $\mathbf{x} \in \operatorname{cl}(\mathbf{X})$ and all $n \in \mathbb{N}$. Since \mathbf{B} is compact, we know that $(\mathbf{z}_n)_{n \in \mathbb{N}}$ has a convergent subsequence converging to some limit $\mathbf{z} \in \mathbf{B}$. Since weak inequalities are preserve under limits of linear functions, we have $\mathbf{z} \cdot \mathbf{y} \geq \mathbf{z} \cdot \mathbf{x}$ for all $\mathbf{x} \in \operatorname{cl}(\mathbf{X})$. Consequently, since $\mathbf{X} \subseteq \operatorname{cl}(\mathbf{X})$, we have $\mathbf{z} \cdot \mathbf{y} \geq \sup\{\mathbf{z} \cdot \mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$.

Let $\mathbf{X}, \mathbf{Y} \subseteq \mathbb{R}^n$ be convex and have disjoint interiors and let $\mathbf{W} = \operatorname{int}(\mathbf{X}) - \operatorname{int}(\mathbf{Y}) \subseteq \mathbb{R}^n$. Since $\operatorname{int}(\mathbf{Y}) \cap \operatorname{int}(\mathbf{X}) = \emptyset$, we know that $\mathbf{0} \not\in \mathbf{W}$. Simple algebra shows that \mathbf{W} is convex. From the previous lemmas it follows that there exists some $\mathbf{z} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $0 = \mathbf{z} \cdot \mathbf{0} \ge \mathbf{z} \cdot (\mathbf{x} - \mathbf{y})$ for all $\mathbf{x} \in \mathbf{X}$ and all $\mathbf{y} \in \mathbf{Y}$ (if $0 \in \operatorname{fro}(\mathbf{W})$ use Lemma 1, otherwise use Lemma 2). Which implies that $\mathbf{z} \cdot \mathbf{x} \ge \mathbf{z} \cdot \mathbf{y}$ for all $\mathbf{x} \in \mathbf{X}$ and all $\mathbf{y} \in \mathbf{Y}$, and hence $\sup\{\mathbf{z} \cdot \mathbf{y} \mid \mathbf{y} \in \mathbf{Y}\} \le \inf\{\mathbf{z} \cdot \mathbf{x} \mid \mathbf{x} \in \mathbf{X}\}$.

28D